Calibration of an interrupted traffic flow system using NGSIM trajectory data sets

Author(s):  
Yaling Fang ◽  
Zhongke Shi ◽  
Jinliang Cao
2021 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Naixia Mou ◽  
Haonan Ren ◽  
Yunhao Zheng ◽  
Jinhai Chen ◽  
Jiqiang Niu ◽  
...  

Maritime traffic can reflect the diverse and complex relations between countries and regions, such as economic trade and geopolitics. Based on the AIS (Automatic Identification System) trajectory data of ships, this study constructs the Maritime Silk Road traffic network. In this study, we used a complex network theory along with social network analysis and network flow analysis to analyze the spatial distribution characteristics of maritime traffic flow of the Maritime Silk Road; further, we empirically demonstrate the traffic inequality in the route. On this basis, we explore the role of the country in the maritime traffic system and the resulting traffic relations. There are three main results of this study. (1) The inequality in the maritime traffic of the Maritime Silk Road has led to obvious regional differences. Europe, west Asia, northeast Asia, and southeast Asia are the dominant regions of the Maritime Silk Road. (2) Different countries play different maritime traffic roles. Italy, Singapore, and China are the core countries in the maritime traffic network of the Maritime Silk Road; Greece, Turkey, Cyprus, Lebanon, and Israel have built a structure of maritime traffic flow in the eastern Mediterranean Sea, and Saudi Arabia serves as a bridge for maritime trade between Asia and Europe. (3) The maritime traffic relations show the characteristics of regionalization; countries in west Asia and the European Mediterranean region are clearly polarized, and competition–synergy relations have become the main form of maritime traffic relations among the countries in the dominant regions. Our results can provide a scientific reference for the coordinated development of regional shipping, improvement of maritime competition, cooperation strategies for countries, and adjustments in the organizational structure of ports along the Maritime Silk Road.


Author(s):  
Lei Lin ◽  
Siyuan Gong ◽  
Srinivas Peeta ◽  
Xia Wu

The advent of connected and autonomous vehicles (CAVs) will change driving behavior and travel environment, and provide opportunities for safer, smoother, and smarter road transportation. During the transition from the current human-driven vehicles (HDVs) to a fully CAV traffic environment, the road traffic will consist of a “mixed” traffic flow of HDVs and CAVs. Equipped with multiple sensors and vehicle-to-vehicle communications, a CAV can track surrounding HDVs and receive trajectory data of other CAVs in communication range. These trajectory data can be leveraged with recent advances in deep learning methods to potentially predict the trajectories of a target HDV. Based on these predictions, CAVs can react to circumvent or mitigate traffic flow oscillations and accidents. This study develops attention-based long short-term memory (LSTM) models for HDV longitudinal trajectory prediction in a mixed flow environment. The model and a few other LSTM variants are tested on the Next Generation Simulation US 101 dataset with different CAV market penetration rates (MPRs). Results illustrate that LSTM models that utilize historical trajectories from surrounding CAVs perform much better than those that ignore information even when the MPR is as low as 0.2. The attention-based LSTM models can provide more accurate multi-step longitudinal trajectory predictions. Further, grid-level average attention weight analysis is conducted and the CAVs with higher impact on the target HDV’s future trajectories are identified.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jian Sun ◽  
Kang Zuo ◽  
Shun Jiang ◽  
Zuduo Zheng

Merging behavior is inevitable at on-ramp bottlenecks and is a significant factor in triggering traffic breakdown. In modeling merging behaviors, the gap acceptance theory is generally used. Gap acceptance theory holds that when a gap is larger than the critical gap, the vehicle will merge into the mainline. In this study, however, analyses not only focus on the accepted gaps, but also take the rejected gaps into account, and the impact on merging behavior with multi-rejected (more than once rejecting behavior) gaps was investigated; it shows that the multi-rejected gaps have a great influence on the estimation of critical gap and merging prediction. Two empirical trajectory data sets were collected and analyzed: one at Yan’an Expressway in Shanghai, China, and the other at Highway 101 in Los Angeles, USA. The study made three main contributions. First, it gives the quantitative measurement of the rejected gap which is also a detailed description of non-merging event and investigated the characteristics of the multi-rejected gaps; second, taking the multi-rejected gaps into consideration, it further expanded the concept of the “critical gap” which can be a statistic one and the distribution function of merging probability with respect to such gaps was analyzed by means of survival analysis. This way could make the full use of multi-rejected gaps and accepted gaps and reduce the sample bias, thus estimating the critical gap accurately; finally, considering multi-rejected gaps, it created logistic regression models to predict merging behavior. These models were tested using field data, and satisfactory performances were obtained.


2020 ◽  
Vol 114 ◽  
pp. 225-240 ◽  
Author(s):  
Li Li ◽  
Rui Jiang ◽  
Zhengbing He ◽  
Xiqun (Michael) Chen ◽  
Xuesong Zhou
Keyword(s):  

2020 ◽  
Vol 120 (3) ◽  
pp. 526-546 ◽  
Author(s):  
Hong Ma ◽  
Ni Shen ◽  
Jing Zhu ◽  
Mingrong Deng

Purpose Motivated by a problem in the context of DiDi Travel, the biggest taxi hailing platform in China, the purpose of this paper is to propose a novel facility location problem, specifically, the single source capacitated facility location problem with regional demand and time constraints, to help improve overall transportation efficiency and cost. Design/methodology/approach This study develops a mathematical programming model, considering regional demand and time constraints. A novel two-stage neighborhood search heuristic algorithm is proposed and applied to solve instances based on data sets published by DiDi Travel. Findings The results of this study show that the model is adequate since new characteristics of demand can be deduced from large vehicle trajectory data sets. The proposed algorithm is effective and efficient on small and medium as well as large instances. The research also solves and presents a real instance in the urban area of Chengdu, China, with up to 30 facilities and demand deduced from 16m taxi trajectory data records covering around 16,000 drivers. Research limitations/implications This study examines an offline and single-period case of the problem. It does not consider multi-period or online cases with uncertainties, where decision makers need to dynamically remove out-of-service stations and add other stations to the selected group. Originality/value Prior studies have been quite limited. They have not yet considered demand in the form of vehicle trajectory data in facility location problems. This study takes into account new characteristics of demand, regional and time constrained, and proposes a new variant and its solution approach.


2020 ◽  
Vol 12 (5) ◽  
pp. 1897
Author(s):  
Shaodong Wang ◽  
Yanbin Liu ◽  
Wei Zhi ◽  
Xihua Wen ◽  
Weihua Zhou

With the rapid development of communication and transportation technologies, the urban area is increasingly becoming an ever more dynamic, comprehensive, and complex system. Meanwhile, functional polycentricity as a distinctive feature has been characterizing urban areas around the world. However, the spatial structure of the urban area has yet to be fully comprehended from a dynamic perspective, and understanding the spatial organization of polycentric urban regions (PUR) is crucial for issues related to urban planning, traffic control, and urban risk management. The analysis of polycentricity strongly depends on the spatial scale. In order to identify functional polycentricity at the intra-unban scale, this paper presents a traffic flow-embedded and topic modeling-based methodology framework. This framework was evaluated on real-world datasets from the Wujiang district, Suzhou, China, which contains 151,419 records of taxi trajectory data and 86,036 records of points of interest (POI) data. This paper provides a novel approach to examining urban functional polycentricity via combining urban function distribution and spatial interactions. This proposed methodology can help urban authorities better understand urban dynamics in terms of function distribution and internal connectedness and facilitate urban development in terms of urban planning and traffic control.


2019 ◽  
Vol 630 ◽  
pp. A18 ◽  
Author(s):  
N. Attree ◽  
L. Jorda ◽  
O. Groussin ◽  
S. Mottola ◽  
N. Thomas ◽  
...  

Aims. We use four observational data sets, mainly from the Rosetta mission, to constrain the activity pattern of the nucleus of comet 67P/Churyumov-Gerasimenko (67P). Methods. We developed a numerical model that computes the production rate and non-gravitational acceleration of the nucleus of comet 67P as a function of time, taking into account its complex shape with a shape model reconstructed from OSIRIS imagery. We used this model to fit three observational data sets: the trajectory data from flight dynamics; the rotation state as reconstructed from OSIRIS imagery; and the water production measurements from ROSINA of 67P. The two key parameters of our model, adjusted to fit the three data sets all together, are the activity pattern and the momentum transfer efficiency (i.e., the so-called η parameter of the non-gravitational forces). Results. We find an activity pattern that can successfully reproduce the three data sets simultaneously. The fitted activity pattern exhibits two main features: a higher effective active fraction in two southern super-regions (~10%) outside perihelion compared to the northern regions (<4%), and a drastic rise in effective active fraction of the southern regions (~25−35%) around perihelion. We interpret the time-varying southern effective active fraction by cyclic formation and removal of a dust mantle in these regions. Our analysis supports moderate values of the momentum transfer coefficient η in the range 0.6–0.7; values η ≤ 0.5 or η ≥ 0.8 significantly degrade the fit to the three data sets. Our conclusions reinforce the idea that seasonal effects linked to the orientation of the spin axis play a key role in the formation and evolution of dust mantles, and in turn, they largely control the temporal variations of the gas flux.


Author(s):  
Lu Sun ◽  
Jie Zhou

Empirical speed–density relationships are important not only because of the central role that they play in macroscopic traffic flow theory but also because of their connection to car-following models, which are essential components of microscopic traffic simulation. Multiregime traffic speed– density relationships are more plausible than single-regime models for representing traffic flow over the entire range of density. However, a major difficulty associated with multiregime models is that the breakpoints of regimes are determined in an ad hoc and subjective manner. This paper proposes the use of cluster analysis as a natural tool for the segmentation of speed–density data. After data segmentation, regression analysis can be used to fit each data subset individually. Numerical examples with three real traffic data sets are presented to illustrate such an approach. Using cluster analysis, modelers have the flexibility to specify the number of regimes. It is shown that the K-means algorithm (where K represents the number of clusters) with original (nonstandardized) data works well for this purpose and can be conveniently used in practice.


2011 ◽  
Vol 34 (7) ◽  
pp. 850-861 ◽  
Author(s):  
Guan Yuan ◽  
Shixiong Xia ◽  
Lei Zhang ◽  
Yong Zhou ◽  
Cheng Ji

With the development of location-based services, such as the Global Positioning System and Radio Frequency Identification, a great deal of trajectory data can be collected. Therefore, how to mine knowledge from these data has become an attractive topic. In this paper, we propose an efficient trajectory-clustering algorithm based on an index tree. Firstly, an index tree is proposed to store trajectories and their similarity matrix, with which trajectories can be retrieved efficiently; secondly, a new conception of trajectory structure is introduced to analyse both the internal and external features of trajectories; then, trajectories are partitioned into trajectory segments according to their corners; furthermore, the similarity between every trajectory segment pairs is compared by presenting the structural similarity function; finally, trajectory segments are grouped into different clusters according to their location in the different levels of the index tree. Experimental results on real data sets demonstrate not only the efficiency and effectiveness of our algorithm, but also the great flexibility that feature sensitivity can be adjusted by different parameters, and the cluster results are more practically significant.


Sign in / Sign up

Export Citation Format

Share Document