Energy Efficiency of Opportunistic Routing with Unreliable Links

Author(s):  
Ruifeng Zhang ◽  
Jean-Marie Gorce ◽  
Rongping Dong ◽  
Katia Jaffres-Runser
Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3887 ◽  
Author(s):  
Deep Kumar Bangotra ◽  
Yashwant Singh ◽  
Arvind Selwal ◽  
Nagesh Kumar ◽  
Pradeep Kumar Singh ◽  
...  

The lifetime of a node in wireless sensor networks (WSN) is directly responsible for the longevity of the wireless network. The routing of packets is the most energy-consuming activity for a sensor node. Thus, finding an energy-efficient routing strategy for transmission of packets becomes of utmost importance. The opportunistic routing (OR) protocol is one of the new routing protocol that promises reliability and energy efficiency during transmission of packets in wireless sensor networks (WSN). In this paper, we propose an intelligent opportunistic routing protocol (IOP) using a machine learning technique, to select a relay node from the list of potential forwarder nodes to achieve energy efficiency and reliability in the network. The proposed approach might have applications including e-healthcare services. As the proposed method might achieve reliability in the network because it can connect several healthcare network devices in a better way and good healthcare services might be offered. In addition to this, the proposed method saves energy, therefore, it helps the remote patient to connect with healthcare services for a longer duration with the integration of IoT services.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4112
Author(s):  
Ayesha Akter Lata ◽  
Moonsoo Kang

Wireless sensor networks (WSNs) have been used for environmental monitoring and reporting for many decades. Energy consumption is a significant research topic because wireless sensor nodes are battery-operated to be highly energy-constrained. Several strategies have been introduced in routing and MAC (Medium Access Control) layer protocols to facilitate energy saving. At the routing layer, an energy-efficient routing protocol, known as opportunistic routing (OR), has been designed to improve efficiency. OR achieves energy efficiency via load-balancing, which forwards packets along multiple routes over WSNs. At the MAC layer, an energy-efficient MAC protocol known as the asynchronous duty-cycled MAC (ADCM) protocol achieves energy saving by turning on and off a sensor node’s transmitter and receiver to eliminate unnecessary energy wastage. These protocols each have their own advantages and disadvantages. OR achieves energy efficiency at the routing layer but it raises an issue at the MAC layer. ADCM achieves energy efficiency at the MAC layer, but it hinders the packet forwarding efficiency of the OR. To attain better energy efficiency, a combination of these two ideas led to the development of OR with asynchronous duty-cycled MAC (OR-ADCM). However, even with better energy efficiency, limitations still exist in combining load-balancing and duty-cycling due to conflicts in the inherent properties of OR and ADCM. In this paper, we present a survey of the evolution of OR-ADCM over WSNs to help the reader better understand and appreciate the details of this tradeoff, which we hope will lead to the development of better protocol designs.


Author(s):  
S. Harikishore ◽  
V. Sumalatha

<span>Opportunistic Routing (OR) is developing as a favourable prototype to diminish performance deprivation in Wireless Mesh Networks (WMNs) owing to changing channel conditions and link breakages. When a flow of data is forwarded towards their destination, intermediate forwarders can attune the information of the route carried by the nodes. However, OR does not solve these problems such as routing efficiency and Energy Consumption. If the necessary energy is not presented, the packet is rejected and the delay occurs in the network. To overcome these problems, an Ant Colony Optimization based Energy Efficiency for improving opportunistic routing in Multimedia WMN (ACO-EE) is proposed. In this scheme, we develop the optimal energy strategy based on optimal transmission distance and remaining energy computation is saving node energy and enhancing the network lifetime. The ant colony optimization based route formation is to improve both the energy efficiency and opportunistic routing efficiency in WMN.Simulation results show that ACE-EE can effectively reduce the energy utilization of nodes and extend the network lifetime.</span>


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1025 ◽  
Author(s):  
Yongjie Lu ◽  
Rongxi He ◽  
Xiaojing Chen ◽  
Bin Lin ◽  
Cunqian Yu

Underwater Wireless Sensor Networks (UWSNs) have aroused increasing interest of many researchers in industry, military, commerce and academe recently. Due to the harsh underwater environment, energy efficiency is a significant theme should be considered for routing in UWSNs. Underwater positioning is also a particularly tricky task since the high attenuation of radio-frequency signals in UWSNs. In this paper, we propose an energy-efficient depth-based opportunistic routing algorithm with Q-learning (EDORQ) for UWSNs to guarantee the energy-saving and reliable data transmission. It combines the respective advantages of Q-learning technique and opportunistic routing (OR) algorithm without the full-dimensional location information to improve the network performance in terms of energy consumption, average network overhead and packet delivery ratio. In EDORQ, the void detection factor, residual energy and depth information of candidate nodes are jointly considered when defining the Q-value function, which contributes to proactively detecting void nodes in advance, meanwhile, reducing energy consumption. In addition, a simple and scalable void node recovery mode is proposed for the selection of candidate set so as to rescue packets that are stuck in void nodes unfortunately. Furthermore, we design a novel method to set the holding time for the schedule of packet forwarding base on Q-value so as to alleviate the packet collision and redundant transmission. We conduct extensive simulations to evaluate the performance of our proposed algorithm and compare it with other three routing algorithms on Aqua-sim platform (NS2). The results show that the proposed algorithm significantly improve the performance in terms of energy efficiency, packet delivery ratio and average network overhead without sacrificing too much average packet delay.


2020 ◽  
Vol 7 (1) ◽  
pp. 576-588
Author(s):  
Kechen Zheng ◽  
Xiao-Yang Liu ◽  
Luoyi Fu ◽  
Xinbing Wang ◽  
Yihua Zhu

2021 ◽  
Author(s):  
Mohammed Aljubayri ◽  
Tong Peng ◽  
Mohammad Shikh-Bahaei

AbstractMulti-homed devices such as smartphones, tablets and laptops are enabled with multiple heterogeneous interfaces available for transmission. Those interfaces can be utilized for simultaneous transmission of a single TCP flow using Multipath TCP (MPTCP). MPTCP is a protocol that is designed to increase end-to-end throughput and reliability of communications by splitting data through multiple parallel paths. Although delay in MPTCP enhanced significantly in the recent years, high number of data transmissions remains an issue. In this paper, we reduce MPTCP delay by reducing the number of transmissions using Opportunistic Routing (OR) technique. OR is a routing model used to increase the delivery rate and reliability of data transmission in wireless networks by using the broadcasting method. This enables each subflow data to be delivered by multiple relays. We adapted OR on a number of MPTCP protocols namely, traditional MPTCP, Multipath TCP Traffic Splitting Control (MPTCP-TSC) and Redundant MPTCP (ReMP TCP) in an Internet of Things (IoT) environment. The results show that OR-based MPTCP schemes outperform existing schemes. We further compared the OR-based MPTCP protocols in terms of startup delay and energy efficiency. We found that ReMP TCP is better than other schemes in all scenarios.


Author(s):  
V. A. Spirin ◽  
V. E. Nikol’skii ◽  
D. V. Vokhmintsev ◽  
A. A. Moiseev ◽  
P. G. Smirnov ◽  
...  

At steel production based on scrap metal utilization, the scrap heating before charging into a melting facility is an important way of energy efficiency increase and ecological parameters improving. In winter time scrap metal charging with ice inclusions into a metal melt can result in a considerable damage of equipment and even accidents. Therefore, scrap preliminary drying is necessary to provide industrial safety. It was shown, that in countries with warm and low-snow climate with no risk of scrap metal icing up during its transportation and storing in the open air, the basic task being solved at the scrap drying is an increase of energy efficiency of steelmaking. InRussiathe scrap metal drying first of all provides the safety of the process and next - energy saving. Existing technologies of scrap metal drying and heating considered, as well as advantages and drawbacks of technical solutions used at Russian steel plants. In winter time during scrap metal heating at conveyers (Consteel process) hot gases penetrate not effectively into its mass, the heat is not enough for evaporation of wetness in the metal charge. At scrap heating by the furnace gases, a problem of dioxines emissions elimination arises. Application of shaft heaters results in high efficiency of scrap heating. However, under conditions of Russian winter the upper scrap layers are not always heated higher 0 °С and after getting into a furnace bath the upper scrap layers cause periodical vapor explosions. The shaft heaters create optimal conditions for dioxines formation, which emit into atmosphere. It was shown, that accounting Russian economic and nature conditions, the metal charge drying and heating in modified charging buckets by the heat of burnt natural gas or other additional fuel is optimal. The proposed technical solution enables to burnt off organic impurities ecologically safely, to melt down ice, to evaporate the wetness in the scrap as well as to heat the charge as enough as the charging logistics enables it. The method was implemented at several Russian steel plants. Technical and economical indices of scrap metal drying in buckets under conditions of EAF-based shop, containing two furnaces ДСП-100, presented.


Sign in / Sign up

Export Citation Format

Share Document