Current Injection Effects on the Electrical Performance of 3J Solar Cells Irradiated with Low and High Energy Protons

Author(s):  
Takeshi Ohshima ◽  
Haruki Miyamoto ◽  
Mitsuru Imaizumi ◽  
Chiharu Morioka ◽  
Shirou Kawakita ◽  
...  
2013 ◽  
Vol 341 ◽  
pp. 181-210 ◽  
Author(s):  
S.K. Tripathi

High-energy electron, proton, neutron, photon and ion irradiation of semiconductor diodes and solar cells has long been a topic of considerable interest in the field of semiconductor device fabrication. The inevitable damage production during the process of irradiation is used to study and engineer the defects in semiconductors. In a strong radiation environment in space, the electrical performance of solar cells is degraded due to direct exposure to energetically charged particles. A considerable amount of work has been reported on the study of radiation damage in various solar cell materials and devices in the recent past. In most cases, high-energy heavy ions damage the material by producing a large amount of extended defects, but high-energy light ions are suitable for producing and modifying the intrinsic point defects. The defects can play a variety of electronically active roles that affect the electrical, structural and optical properties of a semiconductor. This review article aims to present an overview of the advancement of research in the modification of glassy semiconducting thin films using different types of radiations (light, proton and swift heavy ions). The work which has been done in our laboratory related to irradiation induced effects in semiconducting thin films will also be compared with the existing literature.


2019 ◽  
Vol 28 (1) ◽  
pp. 66-73
Author(s):  
Ismail Borazan ◽  
Ayşe Celik Bedeloğlu ◽  
Ali Demir

In this article, the improvement in electrical performance of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS) as the transparent electrode doped with different additives (ethylene glycol (EG), isopropyl alcohol) or treatment of sulfuric acid was enhanced that organic solar cells (OSCs) were produced by using poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl C61 butyric acid methyl ester. OSCs were fabricated by the doped or treated PEDOT:PSS films as transparent electrodes. The photoelectrical measurements were carried out and the effects of doping or treatment were compared. As a result, EG-added PEDOT:PSS electrode showed the best power conversion efficiency value of 1.87% among the PEDOT:PSS anodes.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4301
Author(s):  
Yassir A. Alamri ◽  
Saad Mahmoud ◽  
Raya Al-Dadah ◽  
Shivangi Sharma ◽  
J. N. Roy ◽  
...  

This paper investigates the potential of a new integrated solar concentrated photovoltaic (CPV) system that uses a solo point focus Fresnel lens for multiple multi-junction solar cells (MJSCs). The proposed system comprises of an FL concentrator as the primary optical element, a multi-leg homogeniser as the secondary optical element (SOE), a plano-concave lens, and four MJSCs. A three-dimensional model of this system was developed using the ray tracing method to predict the influence of aperture width, height, and position with respect to MJSCs of different reflective and refractive SOE on the overall optical efficiency of the system and the irradiance uniformity achieved on the MJSCs’ surfaces. The results show that the refractive homogeniser using N-BK7 glass can achieve higher optical efficiency (79%) compared to the reflective homogeniser (57.5%). In addition, the peak to average ratio of illumination at MJSCs for the reflective homogeniser ranges from 1.07 to 1.14, while for the refractive homogeniser, it ranges from 1.06 to 1.34, causing minimum effects on the electrical performance of the MJSCs. The novelty of this paper is the development of a high concentration CPV system that integrates multiple MJSCs with a uniform distribution of rays, unlike the conventional CPV systems that utilise a single concentrator onto a single MJSC. The optical efficiency of the CPV system was also examined using both the types of homogeniser (reflective and refractive).


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7708
Author(s):  
Chenchen Li ◽  
Fan Yang ◽  
Pengfei Liu ◽  
Chaoliang Fu ◽  
Quan Liu ◽  
...  

To improve the energy harvesting efficiency of the piezoelectric device, a stack units-based structure was developed and verified. Factors such as stress distribution, load resistance, loads, and loading times influencing the piezoelectric properties were investigated using theoretical analysis and experimental tests. The results show that the unit number has a negative relationship with the generated energy and the stress distribution has no influence on the power generation of the piezoelectric unit array. However, with a small stress difference, units in a parallel connection can obtain high energy conversion efficiency. Additionally, loaded with the matched impedance of 275.0 kΩ at 10.0 kN and 10.0 Hz, the proposed device reached a maximum output power of 84.3 mW, which is enough to supply the low-power sensors. Moreover, the indoor load test illustrates that the electrical performance of the piezoelectric device was positively correlated with the simulated loads when loaded with matched resistance. Furthermore, the electrical property remained stable after the fatigue test of 100,000 cyclic loads. Subsequently, the field study confirmed that the developed piezoelectric device had novel piezoelectric properties with an open-circuit voltage of 190 V under an actual tire load, and the traffic parameters can be extracted from the voltage waveform.


2021 ◽  
Vol 14 (3) ◽  
pp. 249-253

Abstract: In this paper, suitability of thallium sulphide films were investigated as an alternative to conventional silicon and germanium that were used as window layers in solar cells. Thin films were deposited on soda lime glass (SLG) substrates in a chemical bath containing Thallium Chloride (TlCl2) and Thiourea (NH2)2CS which was conditioned at 80 ºC for about 5 hours to deposit the films. Effects of annealing on the film samples at 300 ºC and 350 ºC were studied respectively by use of UV-VIS Avantes electrophotometer and Four-Point-Probe (FPP) machine in the light region with wavelength range from 200 nm to 1000 nm. The results obtained suggest that the thin films obtained are good materials for optoelectronics. The absorption spectra exhibited a relatively high energy band-gap. Materials of this nature are good for window layers which serve as passage to the absorber layer where needed charge carriers are produced. Keywords: Thin film, Thallium Sulphide, Window layer, Optoelectronics, Solar cells.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000873-000876
Author(s):  
Yu-Chou Shih ◽  
Yue Shao ◽  
Yeong-Her Lin ◽  
Frank G. Shi

Scientists are looking for alternatives to fossil fuels as energy source in order to reduce the environmental issues. Solar energy is one of the candidates that have attracted our attention. Monocrystalline and polycrystalline silicon materials are the most common ones for solar cell panels, and one of the key properties of silicon solar cells is the interfacial resistivity between the front silver electrodes and the n-type silicon emitters. The interfacial resistivity is hugely affected by the interfacial structure between silver electrodes and n-type silicon emitters, which plays a very substantial role for the electrical and mechanical properties of the fabricated silicon solar cells. Previous studies show that the residual glass frits layers at the Ag/Si interfaces after the firing process will dramatically increase the contact resistance and this phenomenon subsequently leads to degradation in the overall efficiency of the silicon solar cells. In this study, nano-sized glass frits were employed to improve the interfacial conductivity. Transfer length method (TLM) was applied to evaluate the electrical performance of samples made by different glass frits. Because of the excellent etching ability of nano-sized glass frits, the total amount of isolating compositions can be reduced and therefore there is less residual ceramic at the interfaces. For samples made with nano-sized glass frits, the specific contact resistivity was found to be only 40% of that of samples made with micro-sized glass frits after otherwise identical processing. Our results show that nano-sized glass frits can provide better energy efficiency, less processing time and lower manufacturing cost.


Sign in / Sign up

Export Citation Format

Share Document