Second Order Time-Frequency Modulation in Satellite High-Mobility Communications

Author(s):  
Jiawei Wang ◽  
Chunxiao Jiang ◽  
Linling Kuang ◽  
Changsheng Shan ◽  
Chuncai Zhan
2021 ◽  
Vol 13 (9) ◽  
pp. 1731
Author(s):  
Rongrong Wang ◽  
Bingnan Wang ◽  
Maosheng Xiang ◽  
Chuang Li ◽  
Shuai Wang ◽  
...  

Frequency modulation continuous wave (FMCW) Lidar inevitably suffers from vibration and nonlinear frequency modulation, which influences the ranging and imaging results. In this paper, we analyze the impact of vibration error coupled with nonlinearity error on ranging for FMCW Lidar, and propose a purely theoretical approach that simultaneously compensates for time-varying vibration and nonlinearity in one-period triangular FMCW (T-FMCW) signals. We first extract the localized characteristics of dechirp signals in time-frequency domain by using a second-order synchro-squeezing transform (second-order SST), and establish an instantaneous ranging model based on second-order SST which can characterize the local distributions of time-varying errors. Second, we estimate the nonlinearity error by using time-frequency information of an auxiliary channel and then preliminarily eliminate the error from the instantaneous measurement range. Finally, we construct a particle filtering (PF) model for T-FMCW using the instantaneous ranging model to compensate for the time-varying vibration error and the residual nonlinearity error, and calculate the range of target by using triangular symmetry relations of T-FMCW. Experimental tests prove that the proposed method can accurately estimate the range of target by compensating for the time-varying vibration and the nonlinearity errors simultaneously in one-period T-FMCW signal.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai Wei ◽  
Xuwen Jing ◽  
Bingqiang Li ◽  
Chao Kang ◽  
Zhenhuan Dou ◽  
...  

AbstractIn recent years, considerable attention has been paid in time–frequency analysis (TFA) methods, which is an effective technology in processing the vibration signal of rotating machinery. However, TFA techniques are not sufficient to handle signals having a strong non-stationary characteristic. To overcome this drawback, taking short-time Fourier transform as a link, a TFA methods that using the generalized Warblet transform (GWT) in combination with the second order synchroextracting transform (SSET) is proposed in this study. Firstly, based on the GWT and SSET theories, this paper proposes a method combining the two TFA methods to improve the TFA concentration, named GWT–SSET. Secondly, the method is verified numerically with single-component and multi-component signals, respectively. Quantized indicators, Rényi entropy and mean relative error (MRE) are used to analyze the concentration of TFA and accuracy of instantly frequency (IF) estimation, respectively. Finally, the proposed method is applied to analyze nonstationary signals in variable speed. The numerical and experimental results illustrate the effectiveness of the GWT–SSET method.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 84
Author(s):  
G S Krishnam Naidu Yedla ◽  
D. Siva Sankar Prasad ◽  
P. Raghavendra Rao ◽  
M Siva Kumar ◽  
M VenuGopala Rao

We propose a waveform that includes Linear frequency modulation and non linear frequency modulation wave applicable for MIMO radar. The wave form consists of three segments where the boundary segment consists of LFM content and the middle segment consists of NLFM. The time frequency component in the middle segment is controlled. The range and Doppler side lobe suppression is improved. The genetic algorithm is implemented to suppress the side lobes in the auto correlation and cross correlation functions. The performance is analysed by using ambiguity function.


2021 ◽  
Author(s):  
Tharaj Thaj ◽  
Emanuele Viterbo

This paper proposes <i>orthogonal time sequency multiplexing</i> (OTSM), a novel single carrier modulation scheme based on the well known Walsh-Hadamard transform (WHT) combined with row-column interleaving, and zero padding (ZP) between blocks in the time-domain. The information symbols in OTSM are multiplexed in the delay and sequency domain using a cascade of time-division and Walsh-Hadamard (sequency) multiplexing. By using the WHT for transmission and reception, the modulation and demodulation steps do not require any complex multiplications. We then propose two low-complexity detectors: (i) a simpler non-iterative detector based on a single tap minimum mean square time-frequency domain equalizer and (ii) an iterative time-domain detector. We demonstrate, via numerical simulations, that the proposed modulation scheme offers high performance gains over orthogonal frequency division multiplexing (OFDM) and exhibits the same performance of orthogonal time frequency space (OTFS) modulation, but with lower complexity. In proposing OTSM, along with simple detection schemes, we offer the lowest complexity solution to achieving reliable communication in high mobility wireless channels, as compared to the available schemes published so far in the literature.


Author(s):  
Zhaohong Yu ◽  
Cancan Yi ◽  
Xiangjun Chen ◽  
Tao Huang

Abstract Wind turbines usually operate in harsh environments and in working conditions of variable speed, which easily causes their key components such as gearboxes to fail. The gearbox vibration signal of a wind turbine has nonstationary characteristics, and the existing Time-Frequency (TF) Analysis (TFA) methods have some problems such as insufficient concentration of TF energy. In order to obtain a more apparent and more congregated Time-Frequency Representation (TFR), this paper proposes a new TFA method, namely Adaptive Multiple Second-order Synchrosqueezing Wavelet Transform (AMWSST2). Firstly, a short-time window is innovatively introduced on the foundation of classical Continuous Wavelet Transform (CWT), and the window width is adaptively optimized by using the center frequency and scale factor. After that, a smoothing process is carried out between different segments to eliminate the discontinuity and thus Adaptive Wavelet Transform (AWT) is generated. Then, on the basis of the theoretical framework of Synchrosqueezing Transform (SST) and accurate Instantaneous Frequency (IF) estimation by the utilization of second-order local demodulation operator, Adaptive Second-order Synchrosqueezing Wavelet Transform (AWSST2) is formed. Considering that the quality of actual time-frequency analysis is greatly disturbed by noise components, through performing multiple Synchrosqueezing operations, the congregation of TFR energy is further improved, and finally, the AMWSST2 algorithm studied in this paper is proposed. Since Synchrosqueezing operations are performed only in the frequency direction, this method AMWSST2 allows the signal to be perfectly reconstructed. For the verification of its effectiveness, this paper applies it to the processing of the vibration signal of the gearbox of a 750 kW wind turbine.


2014 ◽  
Vol 1044-1045 ◽  
pp. 976-981
Author(s):  
Jian Zhong Xu ◽  
Fu Qiang Yu ◽  
Ping Guang Duan ◽  
Shu Hua Li

In this paper, we proposed a new algorithm to estimate the direction of arrival (DOA) for wideband linear frequency modulation (LFM) signals, using Radon-Wigner transform (RWT) and estimation of signal parameter via rotational invariance techniques (ESPRIT). To eliminate the cross-terms, we first utilize the RWT with its excellent time-frequency concentration performance. Then, through peak searching, the number of targets, the initial interference and the frequency modulation slope are estimated. On the this base, the array signals are reconstructed. Finally, we adopt the ESPRIT algorithm to estimate the DOA of the array signals. The simulation results show that the proposed algorithm can estimate the DOA of non-stationary signals with high precision.


The resolution in range in continuous time frequency modulation (CTFM) is directly proportional to the pulse width of the compressed signal. The two receiver technique for continuous transmission frequency modulation processing was proposed as a technique to make resolution independent of the pulse width. In two receiver technique the output is without any discontinuity in time. Practically, it has been observed that the resolution in range is also limited by the pulse width of the probe signal bandwidth in the two receiver CTFM technique. The actual performance and limitation of the two receiver technique has been given in this paper


Sign in / Sign up

Export Citation Format

Share Document