scholarly journals Simultaneous Time-Varying Vibration and Nonlinearity Compensation for One-Period Triangular-FMCW Lidar Signal

2021 ◽  
Vol 13 (9) ◽  
pp. 1731
Author(s):  
Rongrong Wang ◽  
Bingnan Wang ◽  
Maosheng Xiang ◽  
Chuang Li ◽  
Shuai Wang ◽  
...  

Frequency modulation continuous wave (FMCW) Lidar inevitably suffers from vibration and nonlinear frequency modulation, which influences the ranging and imaging results. In this paper, we analyze the impact of vibration error coupled with nonlinearity error on ranging for FMCW Lidar, and propose a purely theoretical approach that simultaneously compensates for time-varying vibration and nonlinearity in one-period triangular FMCW (T-FMCW) signals. We first extract the localized characteristics of dechirp signals in time-frequency domain by using a second-order synchro-squeezing transform (second-order SST), and establish an instantaneous ranging model based on second-order SST which can characterize the local distributions of time-varying errors. Second, we estimate the nonlinearity error by using time-frequency information of an auxiliary channel and then preliminarily eliminate the error from the instantaneous measurement range. Finally, we construct a particle filtering (PF) model for T-FMCW using the instantaneous ranging model to compensate for the time-varying vibration error and the residual nonlinearity error, and calculate the range of target by using triangular symmetry relations of T-FMCW. Experimental tests prove that the proposed method can accurately estimate the range of target by compensating for the time-varying vibration and the nonlinearity errors simultaneously in one-period T-FMCW signal.

Author(s):  
Jingyu Hou ◽  
Shaopu Yang ◽  
Qiang Li ◽  
Yongqiang Liu

Abstract The nonlinear frequency response characteristics of a spur gear pair with fractional-order derivative under combined internal and external excitations are investigated based on the incremental harmonic balance (IHB) method. First, a pure torsional vibration model is proposed that contains various complex factors, such as the time-varying mesh stiffness, transmission error, the fluctuation of input torque, backlash. Then, the IHB method is developed to calculate the higher-order approximate solution of the system and the correctness of the results is verified by comparing with numerical simulation results obtained by the Power Series Expansion (PSE) method. Furthermore, the types of various impact situations and their judgment conditions are discussed, and the different impact behaviors are analyzed in detail when w?[0,1.5] by using phase diagrams and amplitude-frequency response curves. The influence of important parameters on the dynamic characteristics of gear pair is analyzed at last. The results indicate that the analytical solution derived by IHB method is sufficiently precise. Significantly, the dynamic characteristics of the system could be effectively controlled by adjusting time-varying mesh stiffness coefficient, the order and coefficient of fractional-order term and the amplitudes of internal excitation or external excitation. As a part of the theory of fractional-order mechanical system, the impact performance of fractional-order gear pair is approached for the first time by analytical method.


2021 ◽  
Vol 263 (6) ◽  
pp. 689-697
Author(s):  
Jeongha An ◽  
Hyoungin Ra ◽  
Changhyun Youn ◽  
Kiman Kim

In fluctuating underwater acoustic (UWA) communication, reducing the interference caused by multi-path propagation is important to get better performance. For this reason, Chirp Spread Spectrum (CSS), which has insensitive Doppler effect and having effective bandwidth, using Linear Frequency Modulation (LFM) waveform was used in UWA communication before. But LFM waveform has high auto-correlation function sidelobes it becomes interference and gets worse performance in reverberation environment. This presentation proposes an UWA communication using Generalized Sinusoidal Frequency Modulation (GSFM) waveform which is generalized form of sinusoidal FM. GSFM waveform usually attains much higher spectral efficiency and lower peak-to-average power ratio than LFM while maintaining same bandwidth and pulse duration. GSFM waveform has various types and we use two GSFM pulses that is a Forward type in time-frequency domain and a time reversing type of Forward type in this presentation. Each type represents binary values '0' and '1', respectively. Each of pulses occupy same band of frequency and each of GSFM pulses have nearly orthogonality. Simulation results in various underwater channel environments with noise will be presented. A Bellhop-based underwater channel model is used for simulation. The proposed method will be analyzed compared to the conventional CSS method with LFM waveform.


2020 ◽  
pp. 003151252098308
Author(s):  
Bianca G. Martins ◽  
Wanderson R. da Silva ◽  
João Marôco ◽  
Juliana A. D. B. Campos

In this study we proposed to estimate the impact of lifestyle, negative affectivity, and college students’ personal characteristics on eating behavior. We aimed to verify that negative affectivity moderates the relationship between lifestyle and eating behavior. We assessed eating behaviors of cognitive restraint (CR), uncontrolled eating (UE), and emotional eating (EE)) with the Three-Factor Eating Questionnaire-18. We assessed lifestyle with the Individual Lifestyle Profile, and we assessed negative affectivity with the Depression, Anxiety and Stress Scale-21. We constructed and tested (at p < .05) a hypothetical causal structural model that considered global (second-order) and specific (first-order) lifestyle components, negative affectivity and sample characteristics for each eating behavior dimension. Participants were 1,109 college students ( M age = 20.9, SD = 2.7 years; 65.7% females). We found significant impacts of lifestyle second-order components on negative affectivity (β = −0.57–0.19; p < 0.001–0.01) in all models. Physical and psychological lifestyle components impacted directly only on CR (β=−0.32–0.81; p < 0.001). Negative affectivity impacted UE and EE (β = 0.23–0.30; p < 0.001). For global models, we found no mediation pathways between lifestyle and CR or UE. For specific models, negative affectivity was a mediator between stress management and UE (β=−0.07; p < 0.001). Negative affectivity also mediated the relationship between thoughts of dropping an undergraduate course and UE and EE (β = 0.06–0.08; p < 0.001). Participant sex and weight impacted all eating behavior dimensions (β = 0.08–0.34; p < 0.001–0.01). Age was significant for UE and EE (β=−0,14– −0.09; p < 0.001–0.01). Economic stratum influenced only CR (β = 0.08; p = 0.01). In sum, participants’ lifestyle, negative emotions and personal characteristics were all relevant for eating behavior assessment.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2840
Author(s):  
Hubert Milczarek ◽  
Czesław Leśnik ◽  
Igor Djurović ◽  
Adam Kawalec

Automatic modulation recognition plays a vital role in electronic warfare. Modern electronic intelligence and electronic support measures systems are able to automatically distinguish the modulation type of an intercepted radar signal by means of real-time intra-pulse analysis. This extra information can facilitate deinterleaving process as well as be utilized in early warning systems or give better insight into the performance of hostile radars. Existing modulation recognition algorithms usually extract signal features from one of the rudimentary waveform characteristics, namely instantaneous frequency (IF). Currently, there are a small number of studies concerning IF estimation methods, specifically for radar signals, whereas estimator accuracy may adversely affect the performance of the whole classification process. In this paper, five popular methods of evaluating the IF–law of frequency modulated radar signals are compared. The considered algorithms incorporate the two most prevalent estimation techniques, i.e., phase finite differences and time-frequency representations. The novel approach based on the generalized quasi-maximum likelihood (QML) method is also proposed. The results of simulation experiments show that the proposed QML estimator is significantly more accurate than the other considered techniques. Furthermore, for the first time in the publicly available literature, multipath influence on IF estimates has been investigated.


2021 ◽  
Vol 13 (9) ◽  
pp. 4898
Author(s):  
Andrzej Tucki ◽  
Korneliusz Pylak

Regional inequalities are a major concern for governments and policymakers. There is no doubt that tourism impacts the reduction of inequalities, but this impact is not entirely clear. We consider this ambiguity to be related to both the level of study and type of accommodation. In the present study, we examine the inequality level measured by the Gini coefficient in 108 municipalities of the peripheral region of northeastern Poland from 2009 to 2018. We employ a directional spillover index to measure the impact of two accommodation types on tax incomes per capita. The empirical results indicate that collective accommodation-based tourism only reduced inequality during the financial crisis, while individual accommodation-based tourism started to reduce inequality from 2014, when Russian sanctions hit local agriculture and businesses. These results indicate that the role of accommodation types is time-varying and evident in measuring economic distress during and after shocks.


Author(s):  
Sheree A Pagsuyoin ◽  
Joost R Santos

Water is a critical natural resource that sustains the productivity of many economic sectors, whether directly or indirectly. Climate change alongside rapid growth and development are a threat to water sustainability and regional productivity. In this paper, we develop an extension to the economic input-output model to assess the impact of water supply disruptions to regional economies. The model utilizes the inoperability variable, which measures the extent to which an infrastructure system or economic sector is unable to deliver its intended output. While the inoperability concept has been utilized in previous applications, this paper offers extensions that capture the time-varying nature of inoperability as the sectors recover from a disruptive event, such as drought. The model extension is capable of inserting inoperability adjustments within the drought timeline to capture time-varying likelihoods and severities, as well as the dependencies of various economic sectors on water. The model was applied to case studies of severe drought in two regions: (1) the state of Massachusetts (MA) and (2) the US National Capital Region (NCR). These regions were selected to contrast drought resilience between a mixed urban–rural region (MA) and a highly urban region (NCR). These regions also have comparable overall gross domestic products despite significant differences in the distribution and share of the economic sectors comprising each region. The results of the case studies indicate that in both regions, the utility and real estate sectors suffer the largest economic loss; nonetheless, results also identify region-specific sectors that incur significant losses. For the NCR, three sectors in the top 10 ranking of highest economic losses are government-related, whereas in the MA, four sectors in the top 10 are manufacturing sectors. Furthermore, the accommodation sector has also been included in the NCR case intuitively because of the high concentration of museums and famous landmarks. In contrast, the Wholesale Trade sector was among the sectors with the highest economic losses in the MA case study because of its large geographic size conducive for warehouses used as nodes for large-scale supply chain networks. Future modeling extensions could potentially include analysis of water demand and supply management strategies that can enhance regional resilience against droughts. Other regional case studies can also be pursued in future efforts to analyze various categories of drought severity beyond the case studies featured in this paper.


2021 ◽  
Vol 13 (14) ◽  
pp. 7603
Author(s):  
Xiangdong Liu ◽  
Guangxi Cao

The key to transforming China’s economy from high-speed growth to high-quality development is to improve total factor productivity (TFP). Based on the panel data of China’s listed companies participating in PPP (Public–Private Partnerships) projects from 2010 to 2019, this paper constructs the time-varying DID method to test the impact of participation in PPP projects on the company’s TFP empirically, explore the mechanism of the effect of participation in PPP projects on the company’s TFP, and then conduct heterogeneous analysis from four perspectives: region, industry, ownership form, and operation mode. The empirical results show that participation in PPP projects can significantly promote the growth of the company’s TFP, which mainly comes from the promotion of the innovation level of listed companies and the alleviation of financing constraints by participating in PPP projects. In addition, participation in PPP projects has a significant impact on TFP of listed companies in the eastern region, listed companies in the secondary and tertiary industries, state-owned listed companies, and listed companies participating in PPP projects under the BOT mode.


Sign in / Sign up

Export Citation Format

Share Document