scholarly journals A combined generalized Warblet transform and second order synchroextracting transform for analyzing nonstationary signals of rotating machinery

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai Wei ◽  
Xuwen Jing ◽  
Bingqiang Li ◽  
Chao Kang ◽  
Zhenhuan Dou ◽  
...  

AbstractIn recent years, considerable attention has been paid in time–frequency analysis (TFA) methods, which is an effective technology in processing the vibration signal of rotating machinery. However, TFA techniques are not sufficient to handle signals having a strong non-stationary characteristic. To overcome this drawback, taking short-time Fourier transform as a link, a TFA methods that using the generalized Warblet transform (GWT) in combination with the second order synchroextracting transform (SSET) is proposed in this study. Firstly, based on the GWT and SSET theories, this paper proposes a method combining the two TFA methods to improve the TFA concentration, named GWT–SSET. Secondly, the method is verified numerically with single-component and multi-component signals, respectively. Quantized indicators, Rényi entropy and mean relative error (MRE) are used to analyze the concentration of TFA and accuracy of instantly frequency (IF) estimation, respectively. Finally, the proposed method is applied to analyze nonstationary signals in variable speed. The numerical and experimental results illustrate the effectiveness of the GWT–SSET method.

2014 ◽  
Vol 945-949 ◽  
pp. 1112-1115
Author(s):  
Yuan Zhou ◽  
Bin Chen ◽  
Bao Cheng Gao ◽  
Si Jie Zhang

For the variable speed estimation of wheel-bearings in strong background noise, a novel method with the short-time Fourier transform and BP neural network (STFT-BPNN) is proposed. In the method, it calculates the time-frequency spectrum with STFT technique. Then the instantaneous frequency is estimated by peak detection. Taking the instantaneous frequencies as the input vectors, the BP neural network is trained to fit the discrete instantaneous frequencies. The effectiveness of proposed method is demonstrated by simulation. Experimental results show that proposed method provides better performance on variable speed estimation for wheel-bearings.


1995 ◽  
Vol 2 (6) ◽  
pp. 437-444 ◽  
Author(s):  
Howard A. Gaberson

This article discusses time frequency analysis of machinery diagnostic vibration signals. The short time Fourier transform, the Wigner, and the Choi–Williams distributions are explained and illustrated with test cases. Examples of Choi—Williams analyses of machinery vibration signals are presented. The analyses detect discontinuities in the signals and their timing, amplitude and frequency modulation, and the presence of different components in a vibration signal.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Xiaohan Cheng ◽  
Aiming Wang ◽  
Zongwu Li ◽  
Long Yuan ◽  
Yajing Xiao

Signals with multiple components and fast-varying instantaneous frequencies reduce the readability of the time-frequency representations obtained by traditional synchrosqueezing transforms due to time-frequency blurring. We discussed a vertical synchrosqueezing transform, which is a second-order synchrosqueezing transform based on the short-time Fourier transform and compared it to the traditional short-time Fourier transform, synchrosqueezing transform, and another form of the second-order synchrosqueezing transform, the oblique synchrosqueezing transform. The quality of the time-frequency representation and the accuracy of mode reconstruction were compared through simulations and experiments. Results reveal that the second-order frequency estimator of the vertical synchrosqueezing transform could obtain accurate estimates of the instantaneous frequency and achieve highly energy-concentrated time-frequency representations for multicomponent and fast-varying signals. We also explored the application of statistical feature parameters of time-frequency image textures for the early fault diagnosis of roller bearings under fast-varying working conditions, both with and without noise. Experiments showed that there was no direct positive correlation between the resolution of the time-frequency images and the accuracy of fault diagnosis. However, the early fault diagnosis of roller bearings based on statistical texture features of high-resolution images obtained by the vertical synchrosqueezing transform was shown to have high accuracy and strong robustness to noise, thus meeting the demand for intelligent fault diagnosis.


2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 909
Author(s):  
Azamatjon Kakhramon ugli Malikov ◽  
Younho Cho ◽  
Young H. Kim ◽  
Jeongnam Kim ◽  
Junpil Park ◽  
...  

Ultrasonic non-destructive analysis is a promising and effective method for the inspection of protective coating materials. Offshore coating exhibits a high attenuation rate of ultrasonic energy due to the absorption and ultrasonic pulse echo testing becomes difficult due to the small amplitude of the second echo from the back wall of the coating layer. In order to address these problems, an advanced ultrasonic signal analysis has been proposed. An ultrasonic delay line was applied due to the high attenuation of the coating layer. A short-time Fourier transform (STFT) of the waveform was implemented to measure the thickness and state of bonding of coating materials. The thickness of the coating material was estimated by the projection of the STFT into the time-domain. The bonding and debonding of the coating layers were distinguished using the ratio of the STFT magnitude peaks of the two subsequent wave echoes. In addition, the advantage of the STFT-based approach is that it can accurately and quickly estimate the time of flight (TOF) of a signal even at low signal-to-noise ratios. Finally, a convolutional neural network (CNN) was applied to automatically determine the bonding state of the coatings. The time–frequency representation of the waveform was used as the input to the CNN. The experimental results demonstrated that the proposed method automatically determines the bonding state of the coatings with high accuracy. The present approach is more efficient compared to the method of estimating bonding state using attenuation.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550021 ◽  
Author(s):  
M. A. Al-Manie ◽  
W. J. Wang

Due to the advantages offered by the S-transform (ST) distribution, it has been recently successfully implemented for various applications such as seismic and image processing. The desirable properties of the ST include a globally referenced phase as the case with the short time Fourier transform (STFT) while offering a higher spectral resolution as the wavelet transform (WT). However, this estimator suffers from some inherent disadvantages seen as poor energy concentration with higher frequencies. In order to improve the performance of the distribution, a modification to the existing technique is proposed. Additional parameters are proposed to control the window's width which can greatly enhance the signal representation in the time–frequency plane. The new estimator's performance is evaluated using synthetic signals as well as biomedical data. The required features of the ST which include invertability and phase information are still preserved.


Author(s):  
Zhaohong Yu ◽  
Cancan Yi ◽  
Xiangjun Chen ◽  
Tao Huang

Abstract Wind turbines usually operate in harsh environments and in working conditions of variable speed, which easily causes their key components such as gearboxes to fail. The gearbox vibration signal of a wind turbine has nonstationary characteristics, and the existing Time-Frequency (TF) Analysis (TFA) methods have some problems such as insufficient concentration of TF energy. In order to obtain a more apparent and more congregated Time-Frequency Representation (TFR), this paper proposes a new TFA method, namely Adaptive Multiple Second-order Synchrosqueezing Wavelet Transform (AMWSST2). Firstly, a short-time window is innovatively introduced on the foundation of classical Continuous Wavelet Transform (CWT), and the window width is adaptively optimized by using the center frequency and scale factor. After that, a smoothing process is carried out between different segments to eliminate the discontinuity and thus Adaptive Wavelet Transform (AWT) is generated. Then, on the basis of the theoretical framework of Synchrosqueezing Transform (SST) and accurate Instantaneous Frequency (IF) estimation by the utilization of second-order local demodulation operator, Adaptive Second-order Synchrosqueezing Wavelet Transform (AWSST2) is formed. Considering that the quality of actual time-frequency analysis is greatly disturbed by noise components, through performing multiple Synchrosqueezing operations, the congregation of TFR energy is further improved, and finally, the AMWSST2 algorithm studied in this paper is proposed. Since Synchrosqueezing operations are performed only in the frequency direction, this method AMWSST2 allows the signal to be perfectly reconstructed. For the verification of its effectiveness, this paper applies it to the processing of the vibration signal of the gearbox of a 750 kW wind turbine.


2021 ◽  
Author(s):  
Denchai Worasawate ◽  
Warisara Asawaponwiput ◽  
Natsue Yoshimura ◽  
Apichart Intarapanich ◽  
Decho Surangsrirat

BACKGROUND Parkinson’s disease (PD) is a long-term neurodegenerative disease of the central nervous system. The current diagnosis is dependent on clinical observation and the abilities and experience of a trained specialist. One of the symptoms that affect most patients over the course of their illness is voice impairment. OBJECTIVE Voice is one of the non-invasive data that can be collected remotely for diagnosis and disease progression monitoring. In this study, we analyzed voice recording data from a smartphone as a possible disease biomarker. The dataset is from one of the largest mobile PD studies, the mPower study. METHODS A total of 29,798 audio clips from 4,051 participants were used for the analysis. The voice recordings were from sustained phonation by the participant saying /aa/ for ten seconds into the iPhone microphone. The audio samples were converted to a spectrogram using a short-time Fourier transform. CNN models were then applied to classify the samples. RESULTS A total of 29,798 audio clips from 4,051 participants were used for the analysis. The voice recordings were from sustained phonation by the participant saying /aa/ for ten seconds into the iPhone microphone. The audio samples were converted to a spectrogram using a short-time Fourier transform. CNN models were then applied to classify the samples. CONCLUSIONS Classification accuracies of the proposed method with LeNet-5, ResNet-50, and VGGNet-16 are 97.7 ± 0.1%, 98.6 ± 0.2%, and 99.3 ± 0.1%, respectively. CLINICALTRIAL ClinicalTrials.gov NCT02696603; https://www.clinicaltrials.gov/ct2/show/NCT02696603


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Yang Jianwei ◽  
Yue Zhao ◽  
Jinhai Wang ◽  
Yongliang Bai ◽  
Chuan Liu

Abstract Wheel faults are the main causes of safety issues in railway vehicles. The modeling and analysis of wheel faults is crucial for determining and studying the dynamic characteristics of railway vehicles under variable speed conditions. Hence, a vehicle–track coupled dynamics model was established for analysis and calculations. The results showed that the dynamic features of the wheel with a flat fault were more pronounced under traction and braking conditions, whereas the variations in the features under coasting conditions were insignificant. In this paper, a short-time fast Fourier transform and reassignment method was used to process the signals, because the results were unclear when the time–frequency graph was processed only by short time Fourier transform, especially under braking conditions. The variation in the fault frequency under variable speed conditions was determined. Finally, statistical indicators were used to describe the vibration behaviors caused by the wheel flat fault.


Sign in / Sign up

Export Citation Format

Share Document