Experimental multipath delay spread and path loss analysis for the indoor environment at 5.9 GHz

Author(s):  
Zhilong Jiang ◽  
Junyi Yu ◽  
Ran Zhu ◽  
Kun Yang ◽  
Wei Chen
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Bilal Aghoutane ◽  
Mohammed El Ghzaoui ◽  
Hanan El Faylali

AbstractThe aim of this work consists in characterizing the Terahertz (THz) propagation channel in an indoor environment, in order to propose a channel model for THz bands. We first described a propagation loss model by taking into account the attenuation of the channel as a function of distance and frequency. The impulse response of the channel is then described by a set of rays, characterized by their amplitude, their delay and their phase. Apart from the frequency selective nature, path loss in THz band is also an others issue associated with THz communication systems. This work based on the conventional Saleh-Valenzuela (SV) model which is intended for indoor scenarios. In this paper, we have introduced random variables as Line of sight (LOS) component, and then merging it with the SV channel model to adopt it to the THz context. From simulation, we noted an important effect when the distance between the transmitter and the receiver change. This effect produces variations in frequency loss. The simulations carried out from this model show that to enhance the performance of THz system it is recommended to transmit information over transmission windows instead over the whole band.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1653
Author(s):  
Ahmed Al-Saman ◽  
Michael Cheffena ◽  
Olakunle Elijah ◽  
Yousef A. Al-Gumaei ◽  
Sharul Kamal Abdul Rahim ◽  
...  

The millimeter-wave (mmWave) is expected to deliver a huge bandwidth to address the future demands for higher data rate transmissions. However, one of the major challenges in the mmWave band is the increase in signal loss as the operating frequency increases. This has attracted several research interests both from academia and the industry for indoor and outdoor mmWave operations. This paper focuses on the works that have been carried out in the study of the mmWave channel measurement in indoor environments. A survey of the measurement techniques, prominent path loss models, analysis of path loss and delay spread for mmWave in different indoor environments is presented. This covers the mmWave frequencies from 28 GHz to 100 GHz that have been considered in the last two decades. In addition, the possible future trends for the mmWave indoor propagation studies and measurements have been discussed. These include the critical indoor environment, the roles of artificial intelligence, channel characterization for indoor devices, reconfigurable intelligent surfaces, and mmWave for 6G systems. This survey can help engineers and researchers to plan, design, and optimize reliable 5G wireless indoor networks. It will also motivate the researchers and engineering communities towards finding a better outcome in the future trends of the mmWave indoor wireless network for 6G systems and beyond.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Jianwen Ding ◽  
Lei Zhang ◽  
Jingya Yang ◽  
Bin Sun ◽  
Jiying Huang

The rapid development of high-speed railway (HSR) and train-ground communications with high reliability, safety, and capacity promotes the evolution of railway dedicated mobile communication systems from Global System for Mobile Communications-Railway (GSM-R) to Long Term Evolution-Railway (LTE-R). The main challenges for LTE-R network planning are the rapidly time-varying channel and high mobility, because HSR lines consist of a variety of complex terrains, especially the composite scenarios where tunnels, cuttings, and viaducts are connected together within a short distance. Existing researches mainly focus on the path loss and delay spread for the individual HSR scenarios. In this paper, the broadband measurements are performed using a channel sounder at 950 MHz and 2150 MHz in a typical HSR composite scenario. Based on the measurements, the pivotal characteristics are analyzed for path loss exponent, power delay profile, and tap delay line model. Then, the deterministic channel model in which the 3D ray-tracing algorithm is applied in the composite scenario is presented and validated by the measurement data. Based on the ray-tracing simulations, statistical analysis of channel characteristics in delay and Doppler domain is carried out for the HSR composite scenario. The research results can be useful for radio interface design and optimization of LTE-R system.


2008 ◽  
Vol 57 (4) ◽  
pp. 2014-2026 ◽  
Author(s):  
David W. Matolak ◽  
Indranil Sen ◽  
Wenhui Xiong

We describe results from a channel measurement and modeling campaign for the airport surface environment in the 5-GHz band. Using a 50-MHz bandwidth test signal, thousands of power delay profiles (PDPs) were obtained and processed to develop empirical tapped-delay line statistical channel models for large airports. A log-distance path loss model was also developed. The large airport surface channel is classified into three propagation regions, and models are presented for each of the regions for two values of bandwidth. Values of the median root-mean-square (RMS) delay spread range from 500 to 1000 ns for these airports, with the 90 th percentile RMS delay spreads being approximately 1.7 ms. Corresponding correlation bandwidths (i.e., correlation value 1/2) range from approximately 1.5 MHz in non-line-of-sight (NLOS) settings to 17.5 MHz in line-of-sight (LOS) settings. Two types of statistical nonstationarity were also observed: 1) multipath component persistence and 2) propagation region transitions. We provide the multipath component probability of occurrence models and describe Markov chains that are used for modeling both phenomena. Channel tap amplitude statistics are also provided, using the flexible Weibull probability density function (pdf). This pdf was found to best fit fading tap amplitude data, particularly for frequently observed severe fading, which is characterized by fade probabilities that are worse than the commonly used Rayleigh model. Fading parameters equivalent to Nakagami-m-model values ofmnear 0.7 were often observed (withm= 1 being Rayleigh and m < 1 being worse than Rayleigh). We also provide channel tap amplitude correlation coefficients, which typically range from 0.1 to 0.4 but occasionally take values greater than 0.7.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Juyul Lee ◽  
Myung-Don Kim ◽  
Hyun Kyu Chung ◽  
Jinup Kim

This paper presents a NLOS (non-line-of-sight) path loss model for low-height antenna links in rectangular street grids to account for typical D2D (device-to-device) communication link situations in high-rise urban outdoor environments. From wideband propagation channel measurements collected in Seoul City at 3.7 GHz, we observed distinctive power delay profile behaviors between 1-Turn and 2-Turn NLOS links: the 2-Turn NLOS has a wider delay spread. This can be explained by employing the idea that the 2-Turn NLOS has multiple propagation paths along the various street roads from TX to RX, whereas the 1-Turn NLOS has a single dominant propagation path from TX to RX. Considering this, we develop a path loss model encompassing 1-Turn and 2-Turn NLOS links with separate scattering and diffraction parameters for the first and the second corners, based on the Uniform Geometrical Theory of Diffraction. In addition, we consider the effect of building heights on path loss by incorporating an adjustable “waveguide effect” parameter; that is, higher building alleys provide better propagation environments. When compared with field measurements, the predictions are in agreement.


Sign in / Sign up

Export Citation Format

Share Document