Summary of Leaf-based plant disease detection systems: A compilation of systematic study findings to classify the leaf disease classification schemes

Author(s):  
Ravindra Jogekar ◽  
Nandita Tiwari

Plants are prone to different diseases caused by multiple reasons like environmental conditions, light, bacteria, and fungus. These diseases always have some physical characteristics on the leaves, stems, and fruit, such as changes in natural appearance, spot, size, etc. Due to similar patterns, distinguishing and identifying category of plant disease is the most challenging task. Therefore, efficient and flawless mechanisms should be discovered earlier so that accurate identification and prevention can be performed to avoid several losses of the entire plant. Therefore, an automated identification system can be a key factor in preventing loss in the cultivation and maintaining high quality of agriculture products. This paper introduces modeling of rose plant leaf disease classification technique using feature extraction process and supervised learning mechanism. The outcome of the proposed study justifies the scope of the proposed system in terms of accuracy towards the classification of different kind of rose plant disease.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 939 ◽  
Author(s):  
Marko Arsenovic ◽  
Mirjana Karanovic ◽  
Srdjan Sladojevic ◽  
Andras Anderla ◽  
Darko Stefanovic

Plant diseases cause great damage in agriculture, resulting in significant yield losses. The recent expansion of deep learning methods has found its application in plant disease detection, offering a robust tool with highly accurate results. The current limitations and shortcomings of existing plant disease detection models are presented and discussed in this paper. Furthermore, a new dataset containing 79,265 images was introduced with the aim to become the largest dataset containing leaf images. Images were taken in various weather conditions, at different angles, and daylight hours with an inconsistent background mimicking practical situations. Two approaches were used to augment the number of images in the dataset: traditional augmentation methods and state-of-the-art style generative adversarial networks. Several experiments were conducted to test the impact of training in a controlled environment and usage in real-life situations to accurately identify plant diseases in a complex background and in various conditions including the detection of multiple diseases in a single leaf. Finally, a novel two-stage architecture of a neural network was proposed for plant disease classification focused on a real environment. The trained model achieved an accuracy of 93.67%.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 95 ◽  
Author(s):  
Kaizhou Li ◽  
Jianhui Lin ◽  
Jinrong Liu ◽  
Yandong Zhao

Diseases from Ginkgo biloba have brought great losses to medicine and the economy. Therefore, if the degree of disease can be automatically identified in Ginkgo biloba leaves, people will take appropriate measures to avoid losses in advance. Deep learning has made great achievements in plant disease identification and classification. For this paper, the convolution neural network model was used to classify the different degrees of ginkgo leaf disease. This study used the VGGNet-16 and Inception V3 models. After preprocessing and training 1322 original images under laboratory conditions and 2408 original images under field conditions, 98.44% accuracy was achieved under laboratory conditions and 92.19% under field conditions with the VGG model. The Inception V3 model achieved 92.3% accuracy under laboratory conditions and 93.2% under field conditions. Thus, the Inception V3 model structure was more suitable for field conditions. To our knowledge, there is very little research on the classification of different degrees of the same plant disease. The success of this study will have a significant impact on the prediction and early prevention of ginkgo leaf blight.


Author(s):  
Bhavana Nerkar ◽  
Sanjay Talbar

Aims: This text aims to improve the accuracy of plant leaf disease detection using a fused convolutional neural network architecture Study Design:  In this study, propose a hybrid CNN architecture, that adds a bio-inspired layer to the existing CNN architecture in order to improve the accuracy and reduce the delay needed for leaf disease classification. Place and Duration of Study: National institute of electronics and information technology Aurangabad, between June 2018 and September 2020. Methodology: Convolutional neural networks (CNNs) have become a de-facto technique for classification of multi-dimensional data. Activation functions like rectified linear unit (ReLU), softmax, sigmoid, etc. have proven to be highly effective when doing so. Moreover, standard CNN architectures like AlexNet, VGGNet, Google net, etc. further assist this process by providing standard and highly effective network layer arrangements. But these architectures are limited by the speed due to high number of calculations needed to train and test the network. Moreover, as the number of classes increase, there is a reduction in validation and testing accuracy for the networks. In order to remove these drawbacks, hybrid CNN architecture, that adds a bio-inspired layer to the existing CNN architecture in order to improve the accuracy and speed of leaf classification. Results: The developed system was tested on different kinds of leaf diseases, and it was observed that the proposed system obtains more than 98% accuracy for both testing and validation sets. Conclusion: It is observed that the delay is reduced, while the accuracy is improved by the most effective classifiers. This encourage us to use the proposed system for real-time leaf image disease detection.


2021 ◽  
Vol 40 ◽  
pp. 03043
Author(s):  
Isha Agrawal ◽  
Prada Hegde ◽  
Pooja Shetty ◽  
Priyanka Shingane

Identification of plant disease is tough in agribusiness arena. If it is inaccurate, there occurs a tremendous damage in the production and economical price. Leaf Disease detection requires huge amount of work, knowledge, processing time in plant disease. The most used and edible vegetable all over the world is from cucurbitaceous family. The crops under this family have great economic value in the food industry and its production is done in large scale. This family consists of 965 species. If any of these plants catch disease then there would be a tremendous loss in the production of this field yields. Thus, treating them at early stage is best way to prevent such losses. Hence, Deep Learning Algorithm like CNN can be used to detect the diseases of the plants. The leaves of the plants would be used as primary material for identification of the disease, as they are much more visible on the leaves.


Author(s):  
Arpan Singh Rajput ◽  
Shailja Shukla ◽  
S. S. Thakur

Purpose: Agricultural productivity is something on which the economy highly depends in India as well in all over the world. India is an agriculture-dependent country; wherein about 70% of the population depends on agriculture. Methodology: This is one of the main reasons that disease detection in agriculture plays an important role, as having the disease in plant leaf is quite natural. If proper observations are not taken in the agriculture field then it causes serious effects on plants due to which respective product quality and productivity are affected. Detection of plant leaf disease through effective and accurate automatic technique is beneficial at the starting stage as it reduces a large work of monitoring in big farms of crops. Result: This paper presents the review on the state of the art disease classification techniques presently used using image processing that can be used for plant leaf disease detection in agriculture.


Plant diseases have been a major crisis that is disturbing the food production. So there is a need to provide proper procedures for plant disease detection at its growing age and also during harvesting stage. Timely disease detection can help the user to respond instantly and sketch for some defensive actions. This detection can be carried out without human intervention by using plant leaf images. Deep learning is progressively best for image detection and classification. In this effort, a deep learning based GoogleNet architecture is used for plant diseases detection. The model is trained using public database of 54,306 images of 14 crop varieties and their respective diseases. It achieves 97.82% accuracy for 14 crop types making it capable of further deployment in a crop detection and protection application.


2022 ◽  
pp. 51-77
Author(s):  
Meeradevi ◽  
Monica R. Mundada ◽  
Shilpa M.

Modern technologies have improved their application in field of agriculture in order to improve production. Plant diseases are harmful to plant growth, which leads to reduced quality and quantity of crop. Early identification of plant disease will reduce the loss of the crop productivity. So, it is necessary to identify and diagnose the disease at an early stage before it spreads to the entire field. In this chapter, the proposed model uses VGG16 with attention mechanism for leaf disease classification. This model makes use of convolution neural network which consist of convolution block, max pool layer, and fully connected layer with softmax as an activation function. The proposed approach integrates CNN with attention mechanism to focus more on the diseased part of leaf and increase the classification accuracy. The proposed model design is a novel deep learning model to perform the fine tuning in the classification of nine different type of tomato plant disease.


Author(s):  
V. T. Krishnaprasath ◽  
J. Preethi

In this modern era, the detection of plant disease plays a vital role in the sustainability of agricultural ecosystem. Today, India being second in farming, well-timed information related to crop is still questioning. Indian Government's farmer portal is available for pesticides, fertilisers, and farm machinery. To alleviate this problem, the paper describes a model to validate the leaf image, predicting leaf disease and notifying the farmer in an effective way on the harvest failure to stabilise farming income. For specific consideration on the validation, a data set library with predefined, uniformly scaled, regular image patterns of leaf disease, is maintained. The research suggests that farmers utilising the model can predict the breakout of leaf disease predominantly acquiring 100% yield.


Sign in / Sign up

Export Citation Format

Share Document