Functional dissection of the phosphotransferase system provides insight into the prevalence of Faecalibacterium prausnitzii in the host intestinal environment

Author(s):  
Deborah Kang ◽  
Hyeong‐In Ham ◽  
Seung Hwan Lee ◽  
Yong‐Joon Cho ◽  
Yeon‐Ran Kim ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mangyu Choe ◽  
Huitae Min ◽  
Young-Ha Park ◽  
Yeon-Ran Kim ◽  
Jae-Sung Woo ◽  
...  

Abstract Carbon catabolite repression is a regulatory mechanism to ensure sequential utilization of carbohydrates and is usually accomplished by repression of genes for the transport and metabolism of less preferred carbon compounds by a more preferred one. Although glucose and mannitol share the general components, enzyme I and HPr, of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) for their transport, glucose represses the transport and metabolism of mannitol in a manner dependent on the mannitol operon repressor MtlR in Escherichia coli. In a recent study, we identified the dephosphorylated form of HPr as a regulator determining the glucose preference over mannitol by interacting with and augmenting the repressor activity of MtlR in E. coli. Here, we determined the X-ray structure of the MtlR-HPr complex at 3.5 Å resolution to understand how phosphorylation of HPr impedes its interaction with MtlR. The phosphorylation site (His15) of HPr is located close to Glu108 and Glu140 of MtlR and phosphorylation at His15 causes electrostatic repulsion between the two proteins. Based on this structural insight and comparative sequence analyses, we suggest that the determination of the glucose preference over mannitol solely by the MtlR-HPr interaction is conserved within  the Enterobacteriaceae family.


2008 ◽  
Vol 112 (42) ◽  
pp. 13391-13400 ◽  
Author(s):  
Christophe Jardin ◽  
Anselm H. C. Horn ◽  
Gudrun Schürer ◽  
Heinrich Sticht

2020 ◽  
Vol 86 (23) ◽  
Author(s):  
Ye Yao ◽  
Bo Fu ◽  
Dongfei Han ◽  
Yan Zhang ◽  
He Liu

ABSTRACT Acetogenic bacteria are a diverse group of anaerobes that use the reductive acetyl coenzyme A (acetyl-CoA) (Wood-Ljungdahl) pathway for CO2 fixation and energy conservation. The conversion of 2 mol CO2 into acetyl-CoA by using the Wood-Ljungdahl pathway as the terminal electron accepting process is the most prominent metabolic feature for these microorganisms. However, here, we describe that the fecal acetogen Clostridium bovifaecis strain BXX displayed poor metabolic capabilities of autotrophic acetogenesis, and acetogenic utilization of glucose occurred only with the supplementation of formate. Genome analysis of Clostridium bovifaecis revealed that it contains almost the complete genes of the Wood-Ljungdahl pathway but lacks the gene encoding formate dehydrogenase, which catalyzes the reduction of CO2 to formate as the first step of the methyl branch of the Wood-Ljungdahl pathway. The lack of a gene encoding formate dehydrogenase was verified by PCR, reverse transcription-PCR analysis, enzyme activity assay, and its formate-dependent acetogenic utilization of glucose on DNA, RNA, protein, and phenotype level, respectively. The lack of a formate dehydrogenase gene may be associated with the adaption to a formate-rich intestinal environment, considering the isolating source of strain BXX. The formate-dependent acetogenic growth of Clostridium bovifaecis provides insight into a unique metabolic feature of fecal acetogens. IMPORTANCE The acetyl-CoA pathway is an ancient pathway of CO2 fixation, which converts 2 mol of CO2 into acetyl-CoA. Autotrophic growth with H2 and CO2 via the acetyl-CoA pathway as the terminal electron accepting process is the most unique feature of acetogenic bacteria. However, the fecal acetogen Clostridium bovifaecis strain BXX displayed poor metabolic capabilities of autotrophic acetogenesis, and acetogenic utilization of glucose occurred only with the supplementation of formate. The formate-dependent acetogenic growth of Clostridium bovifaecis was associated with its lack of a gene encoding formate dehydrogenase, which may result from adaption to a formate-rich intestinal environment. This study gave insight into a unique metabolic feature of fecal acetogens. Because of the requirement of formate for the acetogenic growth of certain acetogens, the ecological impact of acetogens could be more complex and important in the formate-rich environment due to their trophic interactions with other microbes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gao Long ◽  
Yuting Hu ◽  
Enfu Tao ◽  
Bo Chen ◽  
Xiaoli Shu ◽  
...  

The intestinal microbiota has emerged as a critical regulator of growth and development in the early postnatal period of life. Cesarean section (CS) delivery is one of the strongest disrupting factors of the normal colonization process and has been reported as a risk factor for disorders in later life. In this study, we dynamically and longitudinally evaluated the impact of CS on the initial colonization pattern and development of gut microbiota by 16 healthy Chinese infants with fecal samples collected at 9 time points (day 5, day 8, day 11, week 2, week 4, week 6, week 7, month 2, and month 3) during the first 3 months of life. The V3–V4 regions of 16S rRNA gene were analyzed by Illumina sequencing. In comparison with vaginally delivered (VD) infants, infants born by CS showed decreased relative abundance of Bacteroides and Parabacteroides and enrichment of Clostridium_sensu_stricto_1, Enterococcus, Klebsiella, Clostridioides, and Veillonella. Most interestingly, Firmicutes/Bacteroidetes ratio was found to be significantly higher in the CS group than in the VD group from day 5 until month 3. Besides, the results of microbial functions showed that the VD group harbored significantly higher levels of functional genes in vitamin B6 metabolism at day 5, day 8, week 2, week 4, week 6, week 7, month 2, and month 3 and taurine and hypotaurine metabolism at day 5, while the phosphotransferase system and starch and sucrose metabolism involved functional genes were plentiful in the CS group at day 11, week 2, week 4, week 6, week 7, and month 2 and at week 2, week 7, and month 2, respectively. Our results establish a new evidence that CS affected the composition and development of gut microbiota in the first 3 months and provide a novel insight into strategies for CS-related disorders in later life.


2005 ◽  
Vol 33 (1) ◽  
pp. 220-224 ◽  
Author(s):  
M.H. Saier ◽  
R.N. Hvorup ◽  
R.D. Barabote

The bacterial phosphotransferase system (PTS) is a structurally and functionally complex system with a surprising evolutionary history. The substrate-recognizing protein constituents of the PTS (Enzymes II) derive from at least four independent sources. Some of the non-PTS precursor constituents have been identified, and evolutionary pathways taken have been proposed. Our analyses suggest that two of these independently evolving systems are still in transition, not yet having acquired the full-fledged characteristics of PTS Enzyme II complexes. The work described provides detailed insight into the process of catalytic protein evolution.


1966 ◽  
Vol 24 ◽  
pp. 322-330
Author(s):  
A. Beer

The investigations which I should like to summarize in this paper concern recent photo-electric luminosity determinations of O and B stars. Their final aim has been the derivation of new stellar distances, and some insight into certain patterns of galactic structure.


1984 ◽  
Vol 75 ◽  
pp. 461-469 ◽  
Author(s):  
Robert W. Hart

ABSTRACTThis paper models maximum entropy configurations of idealized gravitational ring systems. Such configurations are of interest because systems generally evolve toward an ultimate state of maximum randomness. For simplicity, attention is confined to ultimate states for which interparticle interactions are no longer of first order importance. The planets, in their orbits about the sun, are one example of such a ring system. The extent to which the present approximation yields insight into ring systems such as Saturn's is explored briefly.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Sign in / Sign up

Export Citation Format

Share Document