scholarly journals Stress Physiology of Lactic Acid Bacteria

2016 ◽  
Vol 80 (3) ◽  
pp. 837-890 ◽  
Author(s):  
Konstantinos Papadimitriou ◽  
Ángel Alegría ◽  
Peter A. Bron ◽  
Maria de Angelis ◽  
Marco Gobbetti ◽  
...  

SUMMARYLactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g.,Lactococcus lactis), probiotic (e.g., severalLactobacillusspp.), and pathogenic (e.g.,EnterococcusandStreptococcusspp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the “stressome” of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.

2017 ◽  
Vol 199 (12) ◽  
Author(s):  
Hervé Nicoloff ◽  
Saumya Gopalkrishnan ◽  
Sarah E. Ades

ABSTRACT The alternative sigma factor σE is a key component of the Escherichia coli response to cell envelope stress and is required for viability even in the absence of stress. The activity of σE increases during entry into stationary phase, suggesting an important role for σE when nutrients are limiting. Elevated σE activity has been proposed to activate a pathway leading to the lysis of nonculturable cells that accumulate during early stationary phase. To better understand σE-directed cell lysis and the role of σE in stationary phase, we investigated the effects of elevated σE activity in cultures grown for 10 days. We demonstrate that high σE activity is lethal for all cells in stationary phase, not only those that are nonculturable. Spontaneous mutants with reduced σE activity, due primarily to point mutations in the region of σE that binds the −35 promoter motif, arise and take over cultures within 5 to 6 days after entry into stationary phase. High σE activity leads to large reductions in the levels of outer membrane porins and increased membrane permeability, indicating membrane defects. These defects can be counteracted and stationary-phase lethality delayed significantly by stabilizing membranes with Mg2+ and buffering the growth medium or by deleting the σE-dependent small RNAs (sRNAs) MicA, RybB, and MicL, which inhibit the expression of porins and Lpp. Expression of these sRNAs also reverses the loss of viability following depletion of σE activity. Our results demonstrate that appropriate regulation of σE activity, ensuring that it is neither too high nor too low, is critical for envelope integrity and cell viability. IMPORTANCE The Gram-negative cell envelope and cytoplasm differ significantly, and separate responses have evolved to combat stress in each compartment. An array of cell envelope stress responses exist, each of which is focused on different parts of the envelope. The σE response is conserved in many enterobacteria and is tuned to monitor pathways for the maturation and delivery of outer membrane porins, lipoproteins, and lipopolysaccharide to the outer membrane. The activity of σE is tightly regulated to match the production of σE regulon members to the needs of the cell. In E. coli, loss of σE results in lethality. Here we demonstrate that excessive σE activity is also lethal and results in decreased membrane integrity, the very phenotype the system is designed to prevent.


2017 ◽  
Vol 199 (20) ◽  
Author(s):  
Susan Gottesman

ABSTRACT Bacteria have robust responses to a variety of stresses. In particular, bacteria like Escherichia coli have multiple cell envelope stress responses, and generally we evaluate what these responses are doing by the repair systems they induce. However, probably at least as important in interpreting what is being sensed as stress are the genes that these stress systems downregulate, directly or indirectly. This is discussed here for the Cpx and sigma E systems of E. coli.


2018 ◽  
Vol 84 (19) ◽  
Author(s):  
Akihito Endo ◽  
Shintaro Maeno ◽  
Yasuhiro Tanizawa ◽  
Wolfgang Kneifel ◽  
Masanori Arita ◽  
...  

ABSTRACT Fructophilic lactic acid bacteria (FLAB) are a recently discovered group, consisting of a few Fructobacillus and Lactobacillus species. Because of their unique characteristics, including poor growth on glucose and preference of oxygen, they are regarded as “unconventional” lactic acid bacteria (LAB). Their unusual growth characteristics are due to an incomplete gene encoding a bifunctional alcohol/acetaldehyde dehydrogenase (adhE). This results in the imbalance of NAD/NADH and the requirement of additional electron acceptors to metabolize glucose. Oxygen, fructose, and pyruvate are used as electron acceptors. FLAB have significantly fewer genes for carbohydrate metabolism than other LAB, especially due to the lack of complete phosphotransferase system (PTS) transporters. They have been isolated from fructose-rich environments, including flowers, fruits, fermented fruits, and the guts of insects that feed on plants rich in fructose, and are separated into two groups on the basis of their habitats. One group is associated with flowers, grapes, wines, and insects, and the second group is associated with ripe fruits and fruit fermentations. Species associated with insects may play a role in the health of their host and are regarded as suitable vectors for paratransgenesis in honey bees. Besides their impact on insect health, FLAB may be promising candidates for the promotion of human health. Further studies are required to explore their beneficial properties in animals and humans and their applications in the food industry.


2017 ◽  
Vol 199 (23) ◽  
Author(s):  
Helen Yakhnin ◽  
Robert Aichele ◽  
Sarah E. Ades ◽  
Tony Romeo ◽  
Paul Babitzke

ABSTRACT CsrA of Escherichia coli is an RNA-binding protein that globally regulates a wide variety of cellular processes and behaviors, including carbon metabolism, motility, biofilm formation, and the stringent response. CsrB and CsrC are small RNAs (sRNAs) that sequester CsrA, thereby preventing CsrA-mRNA interaction. RpoE (σE) is the extracytoplasmic stress response sigma factor of E. coli. Previous RNA sequencing (RNA-seq) studies identified rpoE mRNA as a CsrA target. Here, we explored the regulation of rpoE by CsrA and found that CsrA represses rpoE translation. Gel mobility shift, footprint, and toeprint studies identified three CsrA binding sites in the rpoE leader transcript, one of which overlaps the rpoE Shine-Dalgarno (SD) sequence, while another overlaps the rpoE translation initiation codon. Coupled in vitro transcription-translation experiments showed that CsrA represses rpoE translation by binding to these sites. We further demonstrate that σE indirectly activates the transcription of csrB and csrC, leading to increased sequestration of CsrA, such that repression of rpoE by CsrA is reduced. We propose that the Csr system fine-tunes the σE-dependent cell envelope stress response. We also identified a 51-amino-acid coding sequence whose stop codon overlaps the rpoE start codon and demonstrate that rpoE is translationally coupled with this upstream open reading frame (ORF51). The loss of coupling reduces rpoE translation by more than 50%. Identification of a translationally coupled ORF upstream of rpoE suggests that this previously unannotated protein may participate in the cell envelope stress response. In keeping with existing nomenclature, we named ORF51 rseD, resulting in an operon arrangement of rseD-rpoE-rseA-rseB-rseC. IMPORTANCE CsrA posttranscriptionally represses genes required for bacterial stress responses, including the stringent response, catabolite repression, and the RpoS (σS)-mediated general stress response. We show that CsrA represses the translation of rpoE, encoding the extracytoplasmic stress response sigma factor, and that σE indirectly activates the transcription of csrB and csrC, resulting in reciprocal regulation of these two global regulatory systems. These findings suggest that extracytoplasmic stress leads to derepression of rpoE translation by CsrA, and CsrA-mediated repression helps reset RpoE abundance to prestress levels once envelope damage is repaired. The discovery of an ORF, rseD, translationally coupled with rpoE adds further complexity to translational control of rpoE.


2012 ◽  
Vol 78 (8) ◽  
pp. 2914-2922 ◽  
Author(s):  
J. P. Bitoun ◽  
S. Liao ◽  
X. Yao ◽  
S.-J. Ahn ◽  
R. Isoda ◽  
...  

ABSTRACTPrevious studies have shown that BrpA plays a major role in acid and oxidative stress tolerance and biofilm formation byStreptococcus mutans. Mutant strains lacking BrpA also display increased autolysis and decreased viability, suggesting a role for BrpA in cell envelope integrity. In this study, we examined the impact of BrpA deficiency on cell envelope stresses induced by envelope-active antimicrobials. Compared to the wild-type strain UA159, the BrpA-deficient mutant (TW14D) was significantly more susceptible to antimicrobial agents, especially lipid II inhibitors. Several genes involved in peptidoglycan synthesis were identified by DNA microarray analysis as downregulated in TW14D. Luciferase reporter gene fusion assays also revealed that expression ofbrpAis regulated in response to environmental conditions and stresses induced by exposure to subinhibitory concentrations of cell envelope antimicrobials. In aGalleria mellonella(wax worm) model, BrpA deficiency was shown to diminish the virulence ofS. mutansOMZ175, which, unlikeS. mutansUA159, efficiently kills the worms. Collectively, these results suggest that BrpA plays a role in the regulation of cell envelope integrity and that deficiency of BrpA adversely affects the fitness and diminishes the virulence of OMZ175, a highly invasive strain ofS. mutans.


2013 ◽  
Vol 79 (18) ◽  
pp. 5670-5681 ◽  
Author(s):  
Philipp Adler ◽  
Christoph Josef Bolten ◽  
Katrin Dohnt ◽  
Carl Erik Hansen ◽  
Christoph Wittmann

ABSTRACTIn the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive13C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel13C studies with [13C6]glucose, [1,2-13C2]glucose, and [13C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains ofL. fermentumandL. plantarumrevealed major differences in their fluxes. TheL. fermentumstrains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas onlyL. fermentumNCC 575 used fructose to form mannitol. In contrast,L. plantarumstrains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of differentL. fermentumandL. plantarumstrains indicated a dominant (96%) contribution ofL. fermentumNCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures.L. fermentumNCC 575 might be one candidate due to its superior performance in flux activity.


Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Alberto Gonçalves Evangelista ◽  
Jessica Audrey Feijó Corrêa ◽  
João Vitor Garcia dos Santos ◽  
Eduardo Henrique Custódio Matté ◽  
Mônica Moura Milek ◽  
...  

The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella . In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25–22.5 g l–1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg–1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g−1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella . After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g–1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml–1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.


2018 ◽  
Vol 7 (17) ◽  
Author(s):  
Dongjun Kim ◽  
Mun-ju Cho ◽  
Seungchan Cho ◽  
Yongjun Lee ◽  
Sung June Byun ◽  
...  

Lactic acid bacteria (LAB) are generally recognized as safe (GRAS) and serve as probiotic bacteria when consumed in adequate amounts. Here, we report the complete genome sequence of Lactobacillus reuteri Byun-re-01, isolated from mouse small intestine.


2021 ◽  
Vol 26 (2) ◽  
pp. 2548-2559
Author(s):  
VIORICA CORBU ◽  
◽  
STEFANA PETRUT ◽  
TATIANA VASSU ◽  
DIANA PELINESCU ◽  
...  

During last decades, there is a growing interest for characterizing new microbial strains isolated from various sources (plants, soil and natural fermentative processes), in order to enhance industrial productivity. The aim of the present study was to assess the profile of cell growth parameters and biomass accumulation of 15 newly isolated yeast and lactic acid bacteria (LAB) strains from Romanian spontaneous fermented dairy products under different environmental stress conditions (chemical and physical). On this purpose, the yeast and LAB strains were characterized and identified using MALDI-TOF MS and selected for their biotechnological potential. Cell growth was evaluated in presence of extreme pH values, temperatures and different NaCl concentrations. All strains included in this study grew well under their optimal conditions; some of them preferred extreme parameters: acid / very alkaline pH, high temperatures or NaCl concentration The characterization of microbiota from Romanian spontaneous fermented dairy products might represent a great opportunity for the development of dairy industry using native microorganisms, preserving thus the Romanian biodiversity and cultural heritage.


Sign in / Sign up

Export Citation Format

Share Document