scholarly journals Aloe‐emodin‐mediated antimicrobial photodynamic therapy against dermatophytosis caused by Trichophyton rubrum

Author(s):  
Wenpeng Ma ◽  
Miaomiao Zhang ◽  
Zixin Cui ◽  
Xiaopeng Wang ◽  
Xinwu Niu ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Zixin Cui ◽  
Miaomiao Zhang ◽  
Songmei Geng ◽  
Xinwu Niu ◽  
Xiaopeng Wang ◽  
...  

Infectious dermatological diseases caused by Malassezia furfur are often chronic, recurrent, and recalcitrant. Current therapeutic options are usually tedious, repetitive, and associated with adverse effects. Alternatives that broaden the treatment options and reduce side effects for patients are needed. Antimicrobial photodynamic therapy (aPDT) is an emerging approach that is quite suitable for superficial infections. The aim of this study is to investigate the antimicrobial efficacy and effect of aPDT mediated by haematoporphyrin monomethyl ether (HMME) and aloe emodin (AE) on clinical isolates of M. furfur in vitro. The photodynamic antimicrobial efficacy of HMME and AE against M. furfur was assessed by colony forming unit (CFU) assay. The uptake of HMME and AE by M. furfur cells was investigated by fluorescence microscopy. Reactive oxygen species (ROS) probe and flow cytometry were employed to evaluate the intracellular ROS level. The effect of HMME and AE-mediated aPDT on secreted protease and lipase activity of M. furfur was also investigated. The results showed that HMME and AE in the presence of light effectively inactivated M. furfur cells in a photosensitizer (PS) concentration and light energy dose-dependent manner. AE exhibited higher antimicrobial efficacy against M. furfur than HMME under the same irradiation condition. HMME and AE-mediated aPDT disturbed the fungal cell envelop, significantly increased the intracellular ROS level, and effectively inhibited the activity of secreted protease and lipase of M. furfur cells. The results suggest that HMME and AE have potential to serve as PSs in the photodynamic treatment of dermatological diseases caused by M. furfur, but further ex vivo or in vivo experiments are needed to verify that they can meet the requirements for clinical practice.


2020 ◽  
Vol 19 (4) ◽  
pp. 485-494 ◽  
Author(s):  
Wenpeng Ma ◽  
Chengcheng Liu ◽  
Jiao Li ◽  
Ming Hao ◽  
Yanhong Ji ◽  
...  

Aloe emodin-mediated antimicrobial photodynamic therapy effectively inactivated drug-sensitive and resistant C. albicans and caused damage to the cell wall, cytoplasm, and nucleus.


Author(s):  
Pier Poli ◽  
Francisley Avila Souza ◽  
Mattia Manfredini ◽  
Carlo Maiorana ◽  
Mario Beretta

Not required for Clinical case letters according to the authors' guidelines.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 869
Author(s):  
Beatriz Müller Nunes Souza ◽  
Juliana Guerra Pinto ◽  
André Henrique Correia Pereira ◽  
Alejandro Guillermo Miñán ◽  
Juliana Ferreira-Strixino

Staphylococccus aureus is a ubiquitous and opportunistic bacteria associated with high mortality rates. Antimicrobial photodynamic therapy (aPDT) is based on the application of a light source and a photosensitizer that can interact with molecular oxygen, forming Reactive Oxygen Species (ROS) that result in bacterial inactivation. This study aimed to analyze, in vitro, the action of aPDT with Photodithazine® (PDZ) in methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) strains. The strains were incubated with PDZ at 25, 50, 75, and 100 mg/L for 15 min and irradiated with fluences of 25, 50, and 100 J/cm2. The internalization of PDZ was evaluated by confocal microscopy, the bacterial growth by counting the number of colony-forming units, as well as the bacterial metabolic activity post-aPDT and the production of ROS. In both strains, the photosensitizer was internalized; the production of ROS increased when the aPDT was applied; there was a bacterial reduction compared to the control at all the evaluated fluences and concentrations; and, in most parameters, it was obtained complete inactivation with significant difference (p < 0.05). The implementation of aPDT with PDZ in clinical strains of S. aureus has resulted in its complete inactivation, including the MRSA strains.


Sign in / Sign up

Export Citation Format

Share Document