Chromosome‐level assembly of wild Bactrian camel genome reveals organization of immune gene loci

2020 ◽  
Vol 20 (3) ◽  
pp. 770-780
Author(s):  
Liang Ming ◽  
Zhen Wang ◽  
Li Yi ◽  
Mijiddorj Batmunkh ◽  
Tao Liu ◽  
...  
GigaScience ◽  
2020 ◽  
Vol 9 (7) ◽  
Author(s):  
Morteza Roodgar ◽  
Afshin Babveyh ◽  
Lan H Nguyen ◽  
Wenyu Zhou ◽  
Rahul Sinha ◽  
...  

Abstract Background Macaque species share >93% genome homology with humans and develop many disease phenotypes similar to those of humans, making them valuable animal models for the study of human diseases (e.g., HIV and neurodegenerative diseases). However, the quality of genome assembly and annotation for several macaque species lags behind the human genome effort. Results To close this gap and enhance functional genomics approaches, we used a combination of de novo linked-read assembly and scaffolding using proximity ligation assay (HiC) to assemble the pig-tailed macaque (Macaca nemestrina) genome. This combinatorial method yielded large scaffolds at chromosome level with a scaffold N50 of 127.5 Mb; the 23 largest scaffolds covered 90% of the entire genome. This assembly revealed large-scale rearrangements between pig-tailed macaque chromosomes 7, 12, and 13 and human chromosomes 2, 14, and 15. We subsequently annotated the genome using transcriptome and proteomics data from personalized induced pluripotent stem cells derived from the same animal. Reconstruction of the evolutionary tree using whole-genome annotation and orthologous comparisons among 3 macaque species, human, and mouse genomes revealed extensive homology between human and pig-tailed macaques with regards to both pluripotent stem cell genes and innate immune gene pathways. Our results confirm that rhesus and cynomolgus macaques exhibit a closer evolutionary distance to each other than either species exhibits to humans or pig-tailed macaques. Conclusions These findings demonstrate that pig-tailed macaques can serve as an excellent animal model for the study of many human diseases particularly with regards to pluripotency and innate immune pathways.


2019 ◽  
Author(s):  
Yongshuang Xiao ◽  
Zhizhong Xiao ◽  
Daoyuan Ma ◽  
Chenxi Zhao ◽  
Lin Liu ◽  
...  

2013 ◽  
Vol 20 (9) ◽  
pp. 1440-1448 ◽  
Author(s):  
Michael H. Kogut ◽  
Kenneth J. Genovese ◽  
Haiqi He ◽  
Christina L. Swaggerty ◽  
Yiwei Jiang

ABSTRACTWe have been investigating modulation strategies tailored around the selective stimulation of the host's immune system as an alternative to direct targeting of microbial pathogens by antibiotics. One such approach is the use of a group of small cationic peptides (BT) produced by a Gram-positive soil bacterium,Brevibacillus texasporus. These peptides have immune modulatory properties that enhance both leukocyte functional efficiency and leukocyte proinflammatory cytokine and chemokine mRNA transcription activitiesin vitro. In addition, when provided as a feed additive for just 4 days posthatch, BT peptides significantly induce a concentration-dependent protection against cecal and extraintestinal colonization bySalmonella entericaserovar Enteritidis. In the present studies, we assessed the effects of feeding BT peptides on transcriptional changes on proinflammatory cytokines, inflammatory chemokines, and Toll-like receptors (TLR) in the ceca of broiler chickens with and withoutS. Enteritidis infection. After feeding a BT peptide-supplemented diet for the first 4 days posthatch, chickens were then challenged withS. Enteritidis, and intestinal gene expression was measured at 1 or 7 days postinfection (p.i.) (5 or 11 days of age). Intestinal expression of innate immune mRNA transcripts was analyzed by quantitative real-time PCR (qRT-PCR). Analysis of relative mRNA expression showed that a BT peptide-supplemented diet did not directly induce the transcription of proinflammatory cytokine, inflammatory chemokine, type I/II interferon (IFN), or TLR mRNA in chicken cecum. However, feeding the BT peptide-supplemented diet primed cecal tissue for increased (P≤ 0.05) transcription of TLR4, TLR15, and TLR21 upon infection withS. Enteritidis on days 1 and 7 p.i. Likewise, feeding the BT peptides primed the cecal tissue for increased transcription of proinflammatory cytokines (interleukin 1β [IL-1β], IL-6, IL-18, type I and II IFNs) and inflammatory chemokine (CxCLi2) in response toS. Enteritidis infection 1 and 7 days p.i. compared to the chickens fed the basal diet. These small cationic peptides may prove useful as alternatives to antibiotics as local immune modulators in neonatal poultry by providing prophylactic protection againstSalmonellainfections.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathalie Raharimalala ◽  
Stephane Rombauts ◽  
Andrew McCarthy ◽  
Andréa Garavito ◽  
Simon Orozco-Arias ◽  
...  

AbstractCaffeine is the most consumed alkaloid stimulant in the world. It is synthesized through the activity of three known N-methyltransferase proteins. Here we are reporting on the 422-Mb chromosome-level assembly of the Coffea humblotiana genome, a wild and endangered, naturally caffeine-free, species from the Comoro archipelago. We predicted 32,874 genes and anchored 88.7% of the sequence onto the 11 chromosomes. Comparative analyses with the African Robusta coffee genome (C. canephora) revealed an extensive genome conservation, despite an estimated 11 million years of divergence and a broad diversity of genome sizes within the Coffea genus. In this genome, the absence of caffeine is likely due to the absence of the caffeine synthase gene which converts theobromine into caffeine through an illegitimate recombination mechanism. These findings pave the way for further characterization of caffeine-free species in the Coffea genus and will guide research towards naturally-decaffeinated coffee drinks for consumers.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guifang Lin ◽  
Cheng He ◽  
Jun Zheng ◽  
Dal-Hoe Koo ◽  
Ha Le ◽  
...  

Abstract Background The maize inbred line A188 is an attractive model for elucidation of gene function and improvement due to its high embryogenic capacity and many contrasting traits to the first maize reference genome, B73, and other elite lines. The lack of a genome assembly of A188 limits its use as a model for functional studies. Results Here, we present a chromosome-level genome assembly of A188 using long reads and optical maps. Comparison of A188 with B73 using both whole-genome alignments and read depths from sequencing reads identify approximately 1.1 Gb of syntenic sequences as well as extensive structural variation, including a 1.8-Mb duplication containing the Gametophyte factor1 locus for unilateral cross-incompatibility, and six inversions of 0.7 Mb or greater. Increased copy number of carotenoid cleavage dioxygenase 1 (ccd1) in A188 is associated with elevated expression during seed development. High ccd1 expression in seeds together with low expression of yellow endosperm 1 (y1) reduces carotenoid accumulation, accounting for the white seed phenotype of A188. Furthermore, transcriptome and epigenome analyses reveal enhanced expression of defense pathways and altered DNA methylation patterns of the embryonic callus. Conclusions The A188 genome assembly provides a high-resolution sequence for a complex genome species and a foundational resource for analyses of genome variation and gene function in maize. The genome, in comparison to B73, contains extensive intra-species structural variations and other genetic differences. Expression and network analyses identify discrete profiles for embryonic callus and other tissues.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lin Chen ◽  
Yuxiang Dong ◽  
Yitong Pan ◽  
Yuhan Zhang ◽  
Ping Liu ◽  
...  

Abstract Background Breast cancer is one of the main malignant tumors that threaten the lives of women, which has received more and more clinical attention worldwide. There are increasing evidences showing that the immune micro-environment of breast cancer (BC) seriously affects the clinical outcome. This study aims to explore the role of tumor immune genes in the prognosis of BC patients and construct an immune-related genes prognostic index. Methods The list of 2498 immune genes was obtained from ImmPort database. In addition, gene expression data and clinical characteristics data of BC patients were also obtained from the TCGA database. The prognostic correlation of the differential genes was analyzed through Survival package. Cox regression analysis was performed to analyze the prognostic effect of immune genes. According to the regression coefficients of prognostic immune genes in regression analysis, an immune risk scores model was established. Gene set enrichment analysis (GSEA) was performed to probe the biological correlation of immune gene scores. P < 0.05 was considered to be statistically significant. Results In total, 556 immune genes were differentially expressed between normal tissues and BC tissues (p < 0. 05). According to the univariate cox regression analysis, a total of 66 immune genes were statistically significant for survival risk, of which 30 were associated with overall survival (P < 0.05). Finally, a 15 immune genes risk scores model was established. All patients were divided into high- and low-groups. KM survival analysis revealed that high immune risk scores represented worse survival (p < 0.001). ROC curve indicated that the immune genes risk scores model had a good reliability in predicting prognosis (5-year OS, AUC = 0.752). The established risk model showed splendid AUC value in the validation dataset (3-year over survival (OS) AUC = 0.685, 5-year OS AUC = 0.717, P = 0.00048). Moreover, the immune risk signature was proved to be an independent prognostic factor for BC patients. Finally, it was found that 15 immune genes and risk scores had significant clinical correlations, and were involved in a variety of carcinogenic pathways. Conclusion In conclusion, our study provides a new perspective for the expression of immune genes in BC. The constructed model has potential value for the prognostic prediction of BC patients and may provide some references for the clinical precision immunotherapy of patients.


2021 ◽  
pp. 1-13
Author(s):  
Seema Khadirnaikar ◽  
Annesha Chatterjee ◽  
Sudhanshu Kumar Shukla

BACKGROUND: Leukocyte infiltration plays an critical role in outcome of various diseases including Lung adenocarcinoma (LUAD). OBJECTIVES: To understand the genetic and epigenetic factors affecting leukocyte infiltration and identification and validation of immune based biomarkers. METHOD: Correlation analysis was done to get the associations of the factors. CIBERSORT analysis was done for immune cell infiltration. Genetic and epigenetic analysis were performed. Cox regression was carried out for survival. RESULTS: We categorized the TCGA-LUAD patients based on Leukocyte fraction (LF) and performed extensive immunogenomic analysis. Interestingly, we showed that LF has a negative correlation with copy number variation (CNV) but not with mutational load. However, several individual genetic mutations, including KRAS and KEAP1, were significantly linked with LF. Also, as expected, patients with high LF showed significantly increased expression of genes involved in leukocyte migration and activation. DNA methylation changes also showed a strong association with LF and regulated a significant proportion of genes associated with LF. We also developed and validated an independent prognostic immune signature using the top six prognostic genes associated with LF. CONCLUSION: Together, we have identified clinical, genetic, and epigenetic variations associated with LUAD LF and developed an immune gene-based signature for disease prognostication.


Planta ◽  
2021 ◽  
Vol 253 (5) ◽  
Author(s):  
Marciel Pereira Mendes ◽  
Richard Hickman ◽  
Marcel C. Van Verk ◽  
Nicole M. Nieuwendijk ◽  
Anja Reinstädler ◽  
...  

Abstract Main conclusion Overexpression of pathogen-induced cysteine-rich transmembrane proteins (PCMs) in Arabidopsis thaliana enhances resistance against biotrophic pathogens and stimulates hypocotyl growth, suggesting a potential role for PCMs in connecting both biological processes. Abstract Plants possess a sophisticated immune system to protect themselves against pathogen attack. The defense hormone salicylic acid (SA) is an important player in the plant immune gene regulatory network. Using RNA-seq time series data of Arabidopsis thaliana leaves treated with SA, we identified a largely uncharacterized SA-responsive gene family of eight members that are all activated in response to various pathogens or their immune elicitors and encode small proteins with cysteine-rich transmembrane domains. Based on their nucleotide similarity and chromosomal position, the designated Pathogen-induced Cysteine-rich transMembrane protein (PCM) genes were subdivided into three subgroups consisting of PCM1-3 (subgroup I), PCM4-6 (subgroup II), and PCM7-8 (subgroup III). Of the PCM genes, only PCM4 (also known as PCC1) has previously been implicated in plant immunity. Transient expression assays in Nicotiana benthamiana indicated that most PCM proteins localize to the plasma membrane. Ectopic overexpression of the PCMs in Arabidopsis thaliana resulted in all eight cases in enhanced resistance against the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Additionally, overexpression of PCM subgroup I genes conferred enhanced resistance to the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000. The PCM-overexpression lines were found to be also affected in the expression of genes related to light signaling and development, and accordingly, PCM-overexpressing seedlings displayed elongated hypocotyl growth. These results point to a function of PCMs in both disease resistance and photomorphogenesis, connecting both biological processes, possibly via effects on membrane structure or activity of interacting proteins at the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document