Predicting the impact of increasing carbon dioxide concentration and temperature on seed germination and seedling establishment of African grasses in Brazilian Cerrado

2015 ◽  
Vol 40 (8) ◽  
pp. 962-973 ◽  
Author(s):  
Ana Paula de Faria ◽  
Geraldo Wilson Fernandes ◽  
Marcel Giovanni Costa França
HortScience ◽  
2017 ◽  
Vol 52 (5) ◽  
pp. 706-712 ◽  
Author(s):  
John Erwin ◽  
Esther Gesick

The impact of irradiance (0–1200 μmol·m−2·s−1) and carbon dioxide concentration (CO2; 50–1200 ppm) on kale (Brassica oleracea and B. napus pabularia; three cultivars), Swiss chard (chard, Beta vulgaris; four cultivars), and spinach (Spinacea oleracea; three cultivars) photosynthetic rate (Pn; per area basis) was determined to facilitate maximizing yield in controlled environment production. Spinach, chard, and kale maximum Pn were 23.8, 20.3, and 18.2 μmol CO2·m−2·s−1 fixed, respectively, across varieties (400 ppm CO2). Spinach and kale had the highest and lowest light compensation points [LCPs (73 and 13 μmol·m−2·s−1, respectively)] across varieties. The light saturation points (LSPs) for chard and kale were similar at 884–978 μmol·m−2·s−1, but for spinach, the LSP was higher at 1238 μmol·m−2·s−1. Dark respiration was lowest on kale and highest on spinach (−0.83 and −5.00 μmol CO2·m−2·s−1, respectively). The spinach CO2 compensation point (CCP) was lower (56 ppm) than the chard or kale CCP (64–65 ppm). Among varieties, ‘Red Russian’ kale Pn saturated at the lowest CO2 concentration (858 ppm), and ‘Bright Lights’ chard saturated at the highest (1266 ppm; 300 μmol·m−2·s−1). Spinach Pn was more responsive to increasing irradiance than to CO2. Kale Pn was more responsive to increasing CO2 than to irradiance, and chard Pn was equally responsive to increasing CO2 or irradiance. Implications and limitations of this work when “upscaling” to whole-plant responses are discussed.


2018 ◽  
Vol 8 (2) ◽  
pp. 214-220
Author(s):  
Jaime Luiz Albuquerque Conceição ◽  
FRANCISLENE ANGELOTTI ◽  
Ana Rosa Peixoto ◽  
Raquel Ghini

The experiments were carried out under controlled conditions to evaluate the impact of increased temperature and concentration of carbon dioxide on infection of Xanthomonas campestris pv viticola, the causal agent of bacterial canker in Vine seedlings. It proceeded the evaluation of the following epidemiological components: incubation period (PI), severity (SEV) and using that data were calculated the area under the disease progress curve (AUDPC). It used grape seedlings (Italia, Crimson Seedless, Sugraone and Selection 8) inoculated with bacterial suspension (108 CFU mL-1). The experimental design was completely randomized, factorial arrangement 4x4 (cultivar x temperature) and 4x2 (cultivar x carbon dioxide concentration) which was carried out twice. The data were subjected to variance analysis. Increasing temperature reduced bacterium’s incubation period with significant differences between genotypes. For Selection 8 and Crimson temperature increase caused enhancement on severity and AUDPC. For Seleção 8 the incubation period (PI) was extended from 7.93 to 30.18 days when the concentration changed from 390 to 770 µmol/mol. The increased CO2 concentration reduced AACPSD and SEV for Sugraone and Selection 8. The results show that the temperature and carbon dioxide (CO2) concentration of the air may have different effects on bacterial canker of grapevine.


2018 ◽  
Vol 8 (1) ◽  
pp. 61-66 ◽  
Author(s):  
P. Kapalo ◽  
F. Domniţa ◽  
C. Bacoţiu ◽  
Nadija Spodyniuk

Abstract From various other studies, it is known that the maximum carbon dioxide concentration in different countries is between 1,000 ppm up to 1,500 ppm. Therefore, the research is focused on indoor environment, namely the production of pollutants from the persons inside office rooms. The article presents the trend of the carbon dioxide concentration from the occupants inside an office. It is examined the carbon dioxide production separately for men and women, for persons of different mass and for persons of different ages. It is also analyzed the carbon dioxide production during a sedentary and physical activities. In parallel with the production of carbon dioxide is presented the monitoring of the human pulse and blood pressure. All these parameters are monitored together with relative humidity and indoor air temperature. The aims of this paper is to describe the partial results of human respiration impact on indoor air quality in closed spaces and to research the connection between carbon dioxide concentration and human health.


2018 ◽  
Vol 234 ◽  
pp. 03001 ◽  
Author(s):  
Evgeni Dimitrov ◽  
Boyko Gigov ◽  
Spas Pantchev ◽  
Philip Michaylov ◽  
Mihail Peychev

In this paper, a dual-fuel compression ignition engine test bench is presented. In hydrogen-diesel fuel co-combustion conditions, the engine parameters are determined – performance: effective torque, effective power and mean effective pressure; fuel economy: fuel consumption and specific fuel consumption; toxicity: carbon monoxide, carbon dioxide, nitrogen oxides, hydrocarbons, and smoke emissions (opacity). The impact of hydrogen-diesel fuel mass ratio on the performance, toxicity and economy of the engine is studied by obtaining a series of hydrogen-diesel fuel ratio variation characteristics at constant engine speed and load. Improvement of the economical parameters of the engine and reduction of carbon dioxide concentration in exhaust gases is detected under operation with hydrogen gas fuel. Significant reduction of the exhaust gases opacity is observed. It is not clear what the impact of the quantity of hydrogen, injected in the engine, on the concentration of nitrogen oxides in the exhaust gases is.


2020 ◽  
Author(s):  
Tiehan Zhou ◽  
Kevin DallaSanta ◽  
Larissa Nazarenko ◽  
Gavin A. Schmidt

Abstract. Stratospheric radiative damping increases as atmospheric carbon dioxide concentration rises. We use the one-dimensional mechanistic models of the QBO to conduct sensitivity experiments and find that when atmospheric carbon dioxide concentration increases, the simulated QBO period shortens due to the enhancing of radiative damping in the stratosphere. This result suggests that increasing stratospheric radiative damping due to rising CO2 may play a role in determining the QBO period in a warming climate along with wave momentum flux entering the stratosphere and tropical vertical residual velocity, both of which also respond to increasing CO2.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ben Parkes ◽  
Alan Gadian ◽  
John Latham

Marine cloud brightening (MCB) is one of several proposed solar radiation management (SRM) geoengineering schemes designed to ameliorate some of the undesirable effects of climate change, for example polar ice loss and associated increased sea levels. Satellite measurements over the last 40 years show a general reduction in polar sea ice area and thickness which is attributed to climate change. In our studies, HadGEM1, a fully coupled climate model, is used to predict changes in surface temperatures and ice cover as a result of implementing MCB in a double carbon dioxide concentration atmosphere. The meridional heat flux (MHF) is the mechanism within the earth system for the transport of energy from tropical to polar regions. This poleward transport of heat in a double carbon dioxide atmosphere amplifies the effects in polar regions, where it has a significant impact on both temperatures and ice cover. The results from this work show that MCB is capable of roughly restoring control temperatures and ice cover (where control is defined as 440 ppm carbon dioxide, a predicted 2020 level) in a double carbon dioxide atmosphere scenario. This work presents the first results on the impact of MCB on the MHF and the ability of the MCB scheme to restore the MHF to a control level.


2021 ◽  
Author(s):  
Tania Rus ◽  
Dorin Beu ◽  
Calin Ciugudeanu

"The indoor environment quality is a key factor in people's lives, which directly affects their comfort, performance, health and well-being. The main factors that contribute to the indoor environmental quality are thermal comfort, air and lighting quality and acoustics. This study aims to extend the current knowledge on the impact of IEQ on students’ performance. Field measurements on environmental factors were performed in two similar classrooms, with the same number of students engaged in a written examination. Compliance of the indoor environmental parameters with the current standards regulations was performed. Students’ performance was quantified by their exam grades. The results of the field measurements show that, in both classrooms, the acoustics and air quality do not fulfil the standard regulations, especially in the case of carbon dioxide concentration which exceeds a lot the threshold limit of 1000 ppm. The outcomes of the study also reveal that in the classroom where the concentration of carbon dioxide is higher, the students scored lower grades, therefore we can conclude that indoor environmental quality has an impact on students’ performance."


Author(s):  
Francislene Angelotti ◽  
Laise Guerra Barbosa ◽  
Juliane Rafaele Alves Barros ◽  
Carlos Antonio Fernandes dos Santos

ABSTRACT The increase of CO2 concentrations and temperatures may affect the plant development and production. This study aimed to evaluate the impact of the increased temperature and carbon dioxide concentration on the development of cowpea cultivars. The experiment was conducted in growth chambers, with control of CO2 and temperature. A completely randomized design was carried out, in a 4 x 3 x 2 factorial arrangement [cultivar x temperature (day/night) x CO2], with three replicates. The duration of the cowpea vegetative and reproductive phases was evaluated and, at the end of the experiment, the number of pods per plant, number of grains per pod, seed weight, shoot fresh and dry matter weight were quantified. Temperature affects the development of cowpea cultivars, and the temperatures of 29 ºC (day)/23 ºC (night) lead to a higher seed weight. The increase of CO2 leads to a higher number of pods and seeds and seed weight. The BRS Tapaihum cultivar presented the highest number of pods and seeds and seed weight. In addition, the temperatures of 32 ºC (day)/29 ºC (night) lead to a greater flower abortion in the BRS Pujante and BRS Tapaihum cultivars.


2020 ◽  
Vol 2020 (2) ◽  
pp. 36-46 ◽  
Author(s):  
Dagmara Stasiowska

AbstractIn paper the issue of a rocket flight impact and overall survivability of such flight by Apis mellifera (western honeybees) specimens is raised. Author claims that it is the key for using them on Mars for pollination in future, as this species is considered as one of the best pollinators, and should be examined before sending first human missions to the Red Planet. Rocket payload ‘BeeO!Logical’ was designed in order to conduct the research, the first of its kind worldwide. Its assumptions are presented along with overall descriptions of the experiments in two sounding rockets. Analysed data included survivability, carbon dioxide concentration values (respiration levels), temperature and humidity. It has been shown that A. mellifera specimens are able to survive the rocket flight. Project development possibilities are described, including widening the scope of the research with bumblebees (Bombus) and implementation of biocybernetic model of bee colony.


2014 ◽  
Vol 7 (6) ◽  
pp. 2917-2932 ◽  
Author(s):  
L. Xu ◽  
R. D. Pyles ◽  
K. T. Paw U ◽  
S. H. Chen ◽  
E. Monier

Abstract. In this study, the Weather Research and Forecasting (WRF) model is coupled with the Advanced Canopy–Atmosphere–Soil Algorithm (ACASA), a high-complexity land surface model. Although WRF is a state-of-the-art regional atmospheric model with high spatial and temporal resolutions, the land surface schemes available in WRF, such as the popular NOAH model, are simple and lack the capability of representing the canopy structure. In contrast, ACASA is a complex multilayer land surface model with interactive canopy physiology and high-order turbulence closure that allows for an accurate representation of heat, momentum, water, and carbon dioxide fluxes between the land surface and the atmosphere. It allows for microenvironmental variables such as surface air temperature, wind speed, humidity, and carbon dioxide concentration to vary vertically within and above the canopy. Surface meteorological conditions, including air temperature, dew point temperature, and relative humidity, simulated by WRF-ACASA and WRF-NOAH are compared and evaluated with observations from over 700 meteorological stations in California. Results show that the increase in complexity in the WRF-ACASA model not only maintains model accuracy but also properly accounts for the dominant biological and physical processes describing ecosystem–atmosphere interactions that are scientifically valuable. The different complexities of physical and physiological processes in the WRF-ACASA and WRF-NOAH models also highlight the impact of different land surface models on atmospheric and surface conditions.


Sign in / Sign up

Export Citation Format

Share Document