Genome‐wide selection signal analysis of Australian Boer goat reveals artificial selection imprinting on candidate genes related to muscle development

2021 ◽  
Author(s):  
B.‐G. Yang ◽  
Y. Yuan ◽  
D.‐K. Zhou ◽  
Y.‐H. Ma ◽  
K.‐F. Mahrous ◽  
...  
2021 ◽  
Author(s):  
Liu Diao ◽  
Lu Chunlian ◽  
Li Shang ◽  
Jia Mengyu ◽  
Li Sai ◽  
...  

ABSTRACTShenxian pigs are the only local black pig of Hebei Province, and were listed in the Genetics of Livestock and Poultry Resources of China in 2016. This breed of pig is considered to be a valuable local pig germplasm genetic resource in China. In the present study, in order to understand the genetic variations of Shenxian pigs, identify selected regions related to superior traits, and accelerate the breeding processes of Shenxian pigs, the whole genome of the Shenxian pigs was resequenced and compared with that of large white pigs. The goal was to explore the germplasm characteristics of Shenxian pigs.The results obtained in this research investigation revealed that the genetic relationships of the Shenxian pig breed were complex, and that sub-populations could be identified within the general population. A total of 23M SNP sites were obtained by whole genome resequencing, and 1,509 selected sites were obtained via bioinformatics analyses. It was determined after annotation that a total of 19 genes were enriched in three items of bioengineering, molecular function, and cell composition.During this research investigation, the aforementioned 19 genes were subjected to GO and KEGG analyses. Subsequently, the candidate genes related to cell proliferation were obtained (DMTF1 and WDR5), which were considered to possibly be related to the slow growth and development of Shenxian pigs. In addition, the candidate genes related to lactation were obtained (CSN2 and CSN3).


2021 ◽  
Author(s):  
Frédéric Hérault ◽  
Annie Vincent ◽  
Ando Yoanne Randriamanantena ◽  
Marie Damon ◽  
Pierre Cherel ◽  
...  

Abstract Background: Many quantitative trait loci (QTLs) affecting pig meat and carcass quality traits have been reported. However, in most cases, the length of these phenotypic QTLs (pQTLs) is large. Hence, the identification of candidate genes and causative polymorphisms hidden behind those pQTLs remains a difficult task. Combining gene expression, phenotype and genotype data in an integrative genomics approach may help to identify regulatory networks and pathways underlying such complex traits. In the present study, we used genome-wide association study (GWAS) and linkage disequilibrium linkage analysis (LDLA) approaches to identify longissimus muscle (LM) and semimembranosus muscle (SM) expression QTLs (eQTLs). The locations of these eQTLs were compared to those of pQTLs previously mapped in the same population of commercial-type pigs. Colocalized eQTLs/pQTLs could help to identify candidate genes and pathways involved in pig carcass and meat quality trait determination. Results: Both approaches led us to identify 1,253 and 1,109 genome-wide significant eQTLs for LM and SM, respectively. We identified only one common eQTL between the two muscles and a few significant common eQTLs between methodologies : 16 in SM and 1 in LM. A total of 192 overlapping locations were identified between eQTLs and pQTLs. Colocalization highlighted some genes involved in muscle development, adipogenic processes or ion calcium homeostasis. These eQTLs allowed us to refine previously identified pQTLs related to carcass and meat quality traits. However, in most cases, the refined loci were still large and contained several coding and noncoding genes. Conclusions: Our results shed light on the muscle-specific genetic control governing mRNA expression and hence controlling the development of pig carcass and meat quality traits. Moreover, colocations between eQTLs and pQTLs implicated genes potentially involved in muscle development, adipogenic processes or ion calcium homeostasis in the pathways governing these traits. Finally, our results allowed us to refine QTLs controlling meat quality traits and to highlight the possible involvement of long noncoding RNAs in the architecture of regulatory networks governing complex traits such as pig carcass and meat quality traits.


2017 ◽  
Vol 7 (7) ◽  
pp. 2391-2403 ◽  
Author(s):  
Amanda S Lobell ◽  
Rachel R Kaspari ◽  
Yazmin L Serrano Negron ◽  
Susan T Harbison

Abstract Ovariole number has a direct role in the number of eggs produced by an insect, suggesting that it is a key morphological fitness trait. Many studies have documented the variability of ovariole number and its relationship to other fitness and life-history traits in natural populations of Drosophila. However, the genes contributing to this variability are largely unknown. Here, we conducted a genome-wide association study of ovariole number in a natural population of flies. Using mutations and RNAi-mediated knockdown, we confirmed the effects of 24 candidate genes on ovariole number, including a novel gene, anneboleyn (formerly CG32000), that impacts both ovariole morphology and numbers of offspring produced. We also identified pleiotropic genes between ovariole number traits and sleep and activity behavior. While few polymorphisms overlapped between sleep parameters and ovariole number, 39 candidate genes were nevertheless in common. We verified the effects of seven genes on both ovariole number and sleep: bin3, blot, CG42389, kirre, slim, VAChT, and zfh1. Linkage disequilibrium among the polymorphisms in these common genes was low, suggesting that these polymorphisms may evolve independently.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 835
Author(s):  
Mohammadreza Mohammadabadi ◽  
Farhad Bordbar ◽  
Just Jensen ◽  
Min Du ◽  
Wei Guo

Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 192
Author(s):  
Xinghai Duan ◽  
Bingxing An ◽  
Lili Du ◽  
Tianpeng Chang ◽  
Mang Liang ◽  
...  

The objective of the present study was to perform a genome-wide association study (GWAS) for growth curve parameters using nonlinear models that fit original weight–age records. In this study, data from 808 Chinese Simmental beef cattle that were weighed at 0, 6, 12, and 18 months of age were used to fit the growth curve. The Gompertz model showed the highest coefficient of determination (R2 = 0.954). The parameters’ mature body weight (A), time-scale parameter (b), and maturity rate (K) were treated as phenotypes for single-trait GWAS and multi-trait GWAS. In total, 9, 49, and 7 significant SNPs associated with A, b, and K were identified by single-trait GWAS; 22 significant single nucleotide polymorphisms (SNPs) were identified by multi-trait GWAS. Among them, we observed several candidate genes, including PLIN3, KCNS3, TMCO1, PRKAG3, ANGPTL2, IGF-1, SHISA9, and STK3, which were previously reported to associate with growth and development. Further research for these candidate genes may be useful for exploring the full genetic architecture underlying growth and development traits in livestock.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shenping Zhou ◽  
Rongrong Ding ◽  
Fanming Meng ◽  
Xingwang Wang ◽  
Zhanwei Zhuang ◽  
...  

Abstract Background Average daily gain (ADG) and lean meat percentage (LMP) are the main production performance indicators of pigs. Nevertheless, the genetic architecture of ADG and LMP is still elusive. Here, we conducted genome-wide association studies (GWAS) and meta-analysis for ADG and LMP in 3770 American and 2090 Canadian Duroc pigs. Results In the American Duroc pigs, one novel pleiotropic quantitative trait locus (QTL) on Sus scrofa chromosome 1 (SSC1) was identified to be associated with ADG and LMP, which spans 2.53 Mb (from 159.66 to 162.19 Mb). In the Canadian Duroc pigs, two novel QTLs on SSC1 were detected for LMP, which were situated in 3.86 Mb (from 157.99 to 161.85 Mb) and 555 kb (from 37.63 to 38.19 Mb) regions. The meta-analysis identified ten and 20 additional SNPs for ADG and LMP, respectively. Finally, four genes (PHLPP1, STC1, DYRK1B, and PIK3C2A) were detected to be associated with ADG and/or LMP. Further bioinformatics analysis showed that the candidate genes for ADG are mainly involved in bone growth and development, whereas the candidate genes for LMP mainly participated in adipose tissue and muscle tissue growth and development. Conclusions We performed GWAS and meta-analysis for ADG and LMP based on a large sample size consisting of two Duroc pig populations. One pleiotropic QTL that shared a 2.19 Mb haplotype block from 159.66 to 161.85 Mb on SSC1 was found to affect ADG and LMP in the two Duroc pig populations. Furthermore, the combination of single-population and meta-analysis of GWAS improved the efficiency of detecting additional SNPs for the analyzed traits. Our results provide new insights into the genetic architecture of ADG and LMP traits in pigs. Moreover, some significant SNPs associated with ADG and/or LMP in this study may be useful for marker-assisted selection in pig breeding.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 318
Author(s):  
Tae-Ho Ham ◽  
Yebin Kwon ◽  
Yoonjung Lee ◽  
Jisu Choi ◽  
Joohyun Lee

We conducted a genome-wide association study (GWAS) of cold tolerance in a collection of 127 rice accessions, including 57 Korean landraces at the seedling stage. Cold tolerance of rice seedlings was evaluated in a growth chamber under controlled conditions and scored on a 0–9 scale, based on their low-temperature response and subsequent recovery. GWAS, together with principal component analysis (PCA) and kinship matrix analysis, revealed four quantitative trait loci (QTLs) on chromosomes 1, 4, and 5 that explained 16.5% to 18.5% of the variance in cold tolerance. The genomic region underlying the QTL on chromosome four overlapped with a previously reported QTL associated with cold tolerance in rice seedlings. Similarly, one of the QTLs identified on chromosome five overlapped with a previously reported QTL associated with seedling vigor. Subsequent bioinformatic and haplotype analyses revealed three candidate genes affecting cold tolerance within the linkage disequilibrium (LD) block of these QTLs: Os01g0357800, encoding a pentatricopeptide repeat (PPR) domain-containing protein; Os05g0171300, encoding a plastidial ADP-glucose transporter; and Os05g0400200, encoding a retrotransposon protein, Ty1-copia subclass. The detected QTLs and further evaluation of these candidate genes in the future will provide strategies for developing cold-tolerant rice in breeding programs.


Sign in / Sign up

Export Citation Format

Share Document