Oncostatin M stimulates immature Leydig cell proliferation but inhibits its maturation and function in rats through JAK1/STAT3 signaling and induction of oxidative stress in vitro

Andrology ◽  
2021 ◽  
Author(s):  
Lili Tian ◽  
Xueyun Li ◽  
Yiyan Wang ◽  
Quanxu Chen ◽  
Xiaoheng Li ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-13 ◽  
Author(s):  
Shouqian Dai ◽  
Ting Liang ◽  
Xiu Shi ◽  
Zongping Luo ◽  
Huilin Yang

Objective. To evaluate the influence of salvianolic acid B (SAB), an antioxidant derived from Danshen, on intervertebral disc degeneration (IDD) and its possible molecular mechanisms. Methods. Sixty adult rats were randomly grouped (control, IDD, and SAB IDD groups). IDD was induced using needle puncture. The rats received daily administration of SAB (20 mg/kg) in the SAB IDD group while the other two groups received only distilled water. The extent of IDD was evaluated using MRI after 3 and 6 weeks and histology after 6 weeks. Oxidative stress was assessed using the ELISA method. In in vitro experiments, nucleus pulposus cells (NPCs) were treated with H2O2 (100 μM) or SAB+H2O2, and levels of oxidative stress were measured. Cell apoptosis was assessed by flow cytometry, expression levels of Bcl-2, Bax, and cleaved caspase-3 proteins. Cell proliferation rate was assessed by EdU analysis. Pathway involvement was determined by Western blotting while the influence of the pathway on NPCs was explored using the pathway inhibitor AG490. Results. The data demonstrate that SAB attenuated injury-induced IDD and oxidative stress, caused by activation of the JAK2/STAT3 signaling pathway in vivo. Oxidative stress induced by H2O2 was reversed by SAB in vitro. SAB reduced the increased cell apoptosis, cleaved caspase-3 expression, and caspase-3 activity induced by H2O2. Reduced cell proliferation and decreased Bcl-2/Bax ratio induced by H2O2 were rescued by SAB. Additionally, the JAK2/STAT3 pathway was activated by SAB, while AG490 counteracted this effect. Conclusion. The results suggest that SAB protects intervertebral discs from oxidative stress-induced degeneration by enhancing proliferation and attenuating apoptosis via activation of the JAK2/STAT3 signaling pathway.


Author(s):  
Mohamed Omar Taqi ◽  
Mohammed Saeed-Zidane ◽  
Samuel Gebremedhn ◽  
Dessie Salilew-Wondim ◽  
Ernst Tholen ◽  
...  

AbstractTranscription factors (TFs) are known to be involved in regulating the expression of several classes of genes during folliculogenesis. However, the regulatory role of TFs during oxidative stress (OS) is not fully understood. The current study was aimed to investigate the regulation of the TFs in bovine granulosa cells (bGCs) during exposure to OS induced by H2O2 in vitro. For this, bGCs derived from ovarian follicles were cultured in vitro till their confluency and then treated with H2O2 for 40 min. Twenty-four hours later, cells were subjected to various phenotypic and gene expression analyses for genes related to TFs, endoplasmic reticulum stress, apoptosis, cell proliferation, and differentiation markers. The bGCs exhibited higher reactive oxygen species accumulation, DNA fragmentation, and endoplasmic reticulum stress accompanied by reduction of mitochondrial activity after exposure to OS. In addition, higher lipid accumulation and lower cell proliferation were noticed in H2O2-challenged cells. The mRNA level of TFs including NRF2, E2F1, KLF6, KLF9, FOS, SREBF1, SREBF2, and NOTCH1 was increased in H2O2-treated cells compared with non-treated controls. However, the expression level of KLF4 and its downstream gene, CCNB1, were downregulated in the H2O2-challenged group. Moreover, targeted inhibition of NRF2 using small interference RNA resulted in reduced expression of KLF9, FOS, SREBF2, and NOTCH1 genes, while the expression of KLF4 was upregulated. Taken together, bovine granulosa cells exposed to OS exhibited differential expression of various transcription factors, which are mediated by the NRF2 signaling pathway.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Raghubendra Singh Dagur ◽  
Moses New-Aaron ◽  
Murali Ganesan ◽  
Weimin Wang ◽  
Svetlana Romanova ◽  
...  

Background: Alcohol abuse is common in people living with HIV-1 and dramaticallyenhances the severity of HIV-induced liver damage by inducing oxidative stress and lysosomaldysfunction in the liver cells. We hypothesize that the increased release of extracellular vesicles(EVs) in hepatocytes and liver humanized mouse model is linked to lysosome dysfunction. Methods:The study was performed on primary human hepatocytes and human hepatoma RLWXP-GFP (Huh7.5 cells stably transfected with CYP2E1 and XPack-GFP) cells and validated on ethanol-fed liverhumanizedfumarylacetoacetate hydrolase (Fah)-/-, Rag2-/-, common cytokine receptor gamma chainknockout (FRG-KO) mice. Cells and mice were infected with HIV-1ADA virus. Results: We observedan increase in the secretion of EVs associated with a decrease in lysosomal activity and expressionof lysosomal-associated membrane protein 1. Next-generation RNA sequencing of primary humanhepatocytes revealed 63 differentially expressed genes, with 13 downregulated and 50 upregulatedgenes in the alcohol–HIV-treated group. Upstream regulator analysis of differentially expressedgenes through Ingenuity Pathway Analysis identified transcriptional regulators affecting downstreamgenes associated with increased oxidative stress, lysosomal associated disease, and function andEVs biogenesis. Our in vitro findings were corroborated by in vivo studies on human hepatocytetransplantedhumanized mice, indicating that intensive EVs’ generation by human hepatocytes andtheir secretion to serum was associated with increased oxidative stress and reduction in lysosomalactivities triggered by HIV infection and ethanol diet. Conclusion: HIV-and-ethanol-metabolisminducedEVs release is tightly controlled by lysosome status in hepatocytes and participates in thedevelopment of double-insult-induced liver injury.


2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.


2012 ◽  
Vol 94 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Céline Miroux ◽  
Olivier Morales ◽  
Khaldoun Ghazal ◽  
Samia Ben Othman ◽  
Yvan de Launoit ◽  
...  

2020 ◽  
Vol 26 (1) ◽  
pp. 53-64
Author(s):  
Zahraa Alali ◽  
Amanda Graham ◽  
Kimberly Swan ◽  
Rebecca Flyckt ◽  
Tommaso Falcone ◽  
...  

Abstract Endometriosis is a female disease which is defined as the presence of ectopic endometrial tissue and is dependent on estrogen for its survival in these ectopic locations. Expression of the ribosomal protein large P1 (RPLP1) is associated with cell proliferation and invasion in several pathologies, but a role in the pathophysiology of endometriosis has not been explored. In this study, we aimed to evaluate the expression and function of RPLP1 with respect to endometriosis pathophysiology. RPLP1 protein was localised by immunohistochemistry (IHC) in eutopic and ectopic tissue from 28 subjects with confirmed endometriosis and from 20 women without signs or symptoms of the disease, while transcript levels were evaluated by qRT-PCR in 77 endometriotic lesions and 55 matched eutopic endometrial biopsies, and protein expression was evaluated using western blotting in 20 of these matched samples. To evaluate the mechanism for enhanced lesion expression of RPLP1, an experimental murine model of endometriosis was used and RPLP1 expression was localized using IHC. In vitro studies using an endometriosis cell line coupled with shRNA knockdown was used to demonstrate its role in cell survival. Expression of RPLP1 mRNA and protein were significantly higher in ectopic lesion tissue compared to paired eutopic endometrium and immunohistochemical localisation revealed predominant localisation to epithelial cells. This pattern of lesion RPLP1 was recapitulated in mice with experimentally induced endometriosis. Stable knockdown of RPLP1 protein resulted in a significant decrease in cell survival in vitro. These studies reveal that RPLP1 is associated with cell proliferation and/or survival and may play a role in the pathophysiology of endometriosis.


2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A16.1-A16
Author(s):  
O Sapega ◽  
R Mikyskova ◽  
K Musilek ◽  
J Bieblova ◽  
Z Hodny ◽  
...  

BackgroundCellular senescence is the process of cell proliferation arrest. Premature cellular senescence can be induced by chemotherapy, irradiation and, under certain circumstances, by cytokines. Senescent cells produce a number of secreted proteins and growth factors that may either stimulate or inhibit cell proliferation. One of the major cytokines that play role in regulation of cellular senescence is IL-6. IL-6/STAT3 signaling pathway represent decisive regulatory factors in cellular senescence. The objective of this study was to compare the effects of the STAT3 inhibitors on senescent and proliferative tumour cells. Further, the therapeutic potential of the STAT3 inhibitors was evaluated using murine tumour models.Materials and MethodsIn vitro, as well as in vivo experiments were performed using TC-1 (model for HPV16-associated tumours) TRAMP-C2 (prostate cancer) cell lines. C57Bl/6NCrl mice, 7–8 weeks old, were obtained from Velaz (Prague, Czech Republic). Experimental protocols were approved by the Institutional Animal Care Committee of the Institute of Molecular Genetics (Prague, Czech Republic). STAT3 inhibitors, namely STATTIC, BP-102 (synthesised at the University of Hradec Kralove) and their derivatives were tested for their effects on tumour cells, such as cytotoxicity, ability to inhibit STAT3 phosphorylation, cell proliferation and tumour growth in syngeneic mice.ResultsWe have previously demonstrated that docetaxel-induced senescence in the TC-1 and TRAMP-C2 murine tumour cell lines, which was proved by in vitro (detection of increased p21 expression, positive beta-galactosidase staining, and the typical SASP capable to induce ‘bystander’ senescence), and in vivo experiments, using C57BL/6 mice [1]. Both TC-1 and TRAMP-C2 cells displayed elevated IL-6 secretion and activated STAT3 signaling pathway. Therefore, we tested efficacy of the STAT3 inhibitors on these cell lines. Cytotoxic and STAT3 phosphorylation inhibitory effects of the inhibitors were observed in both proliferating and senescent cells. Antitumor effects of selected inhibitors were evaluated.ConclusionsCollectively, STAT3 is an attractive target for therapeutic approaches in cancer treatment and we can assume that inhibition of the STAT3 pathway can be used for elimination of the pernicious effects of the senescent cells.ReferenceSimova J, Sapega O, Imrichova T, Stepanek I, Kyjacova L, Mikyskova R, Indrova M, Bieblova J, Bubenik J, Bartek J, et al: Tumor growth accelerated by chemotherapy-induced senescent cells is suppressed by treatment with IL-12 producing cellular vaccines. Oncotarget7: 54952–54964, 2016. This work was supported by the research grant No. NV18-05-00562 provided by the Grant Agency of the Ministry of Health of the Czech Republic.Disclosure InformationO. Sapega: None. R. Mikyskova: None. K. Musilek: None. J. Bieblova: None. Z. Hodny: None. M. Reinis: None.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yuk Wa Lee ◽  
Sai Chuen Fu ◽  
Man Yi Yeung ◽  
Chun Man Lawrence Lau ◽  
Kai Ming Chan ◽  
...  

Tendon healing is slow and usually results in inferior fibrotic tissue formation. Recently, application of tendon derived stem cells (TDSCs) improved tendon healing in animal studies. In a chicken model, local injection of antioxidants reduced tendon adhesion after tendon injury. An in vitro study demonstrated that supplementation of H2O2reduced tenogenic marker expression in TDSCs. These findings suggested that the possibility of TDSCs is involved in tendon healing and the cellular activities of TDSCs might be affected by oxidative stress of the local environment. After tendon injury, oxidative stress is increased. Redox modulation might affect healing outcomes via affecting cellular activities in TDSCs. To study the effect of oxidative stress on TDSCs, the cellular activities of rat/human TDSCs were measured under different dosages of vitamin C or H2O2in this study. Lower dose of vitamin C increased cell proliferation, viability and migration; H2O2affected colony formation and suppressed cell migration, cell viability, apoptosis, and proliferation. Consistent with previous studies, oxidative stresses (H2O2) affect both recruitment and survival of TDSCs, while the antioxidant vitamin C may exert beneficial effects at low doses. In conclusion, redox modulation affected cellular activities of TDSCs and might be a potential strategy for tendon healing treatment.


Antioxidants ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Aleksandra Lewandowska ◽  
Trung Nghia Vo ◽  
Thuy-Dung Ho Nguyen ◽  
Khadija Wahni ◽  
Didier Vertommen ◽  
...  

Members of the DJ-1 protein family are multifunctional enzymes whose loss increases the susceptibility of the cell to oxidative stress. However, little is known about the function of the plant DJ-1 homologs. Therefore, we analyzed the effect of oxidation on the structure and function of chloroplastic AtDJ-1B and studied the phenotype of T-DNA lines lacking the protein. In vitro oxidation of AtDJ-1B with H2O2 lowers its glyoxalase activity, but has no effect on its holdase chaperone function. Remarkably, upon oxidation, the thermostability of AtDJ-1B increases with no significant alteration of the overall secondary structure. Moreover, we found that AtDJ-1B transcript levels are invariable, and loss of AtDJ-1B does not affect plant viability, growth and stress response. All in all, two discrete functions of AtDJ-1B respond differently to H2O2, and AtDJ-1B is not essential for plant development under stress.


Sign in / Sign up

Export Citation Format

Share Document