Identification of genes expressed differentially in female and male gametes of Sipunculus nudus

2020 ◽  
Vol 51 (9) ◽  
pp. 3780-3789
Author(s):  
Wenhua Li ◽  
Mingrui Yuan ◽  
Yaqin Wu ◽  
Ruian Xu
2018 ◽  
Vol 25 (5) ◽  
pp. 976 ◽  
Author(s):  
Jiawei ZHANG ◽  
Ruijuan HAO ◽  
Qingheng WANG ◽  
Chuangye YANG ◽  
Xiaodong DU ◽  
...  

Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 319-327 ◽  
Author(s):  
J D Faris ◽  
B Laddomada ◽  
B S Gill

Abstract Distorted segregation ratios of genetic markers are often observed in progeny of inter- and intraspecific hybrids and may result from competition among gametes or from abortion of the gamete or zygote. In this study, 194 markers mapped in an Aegilops tauschii F2 population were surveyed for distorted segregation ratios. Region(s) with skewed segregation ratios were detected on chromosomes 1D, 3D, 4D, and 7D. These distorter loci are designated as QSd.ksu-1D, QSd.ksu-3D, QSd.ksu-4D, and QSd.ksu-7D. Three regions of segregation distortion identified on chromosome 5D were analyzed in two sets of reciprocal backcross populations to analyze the effect of sex and cytoplasm on segregation distortion. Extreme distortion of marker segregation ratios was observed in populations in which the F1 was used as the male parent, and ratios were skewed in favor of TA1691 alleles. There was some evidence of differential transmission caused by nucleo-cytoplasmic interactions. Our results agree with other studies stating that loci affecting gametophyte competition in male gametes are located on 5DL. The distorter loci on 5DL are designated as QSd.ksu-5D.1, QSd.ksu-5D.2, and QSd.ksu-5D.3.


2017 ◽  
Vol 7 (7) ◽  
pp. 2151-2159 ◽  
Author(s):  
Jennafer A P Hamlin ◽  
Natasha A Sherman ◽  
Leonie C Moyle

Abstract Recognition and rejection of heterospecific male gametes occurs in a broad range of taxa, although the complexity of mechanisms underlying these components of postmating cryptic female choice is poorly understood. In plants, the arena for postmating interactions is the female reproductive tract (pistil), within which heterospecific pollen tube growth can be arrested via active molecular recognition and rejection. Unilateral incompatibility (UI) is one such postmating barrier in which pollen arrest occurs in only one direction of an interspecific cross. We investigated the genetic basis of pistil-side UI between Solanum species, with the specific goal of understanding the role and magnitude of epistasis between UI QTL. Using heterospecific introgression lines (ILs) between Solanum pennellii and S. lycopersicum, we assessed the individual and pairwise effects of three chromosomal regions (ui1.1, ui3.1, and ui12.1) previously associated with interspecific UI among Solanum species. Specifically, we generated double introgression (‘pyramided’) genotypes that combined ui12.1 with each of ui1.1 and ui3.1, and assessed the strength of UI pollen rejection in the pyramided lines, compared to single introgression genotypes. We found that none of the three QTL individually showed UI rejection phenotypes, but lines combining ui3.1 and ui12.1 showed significant pistil-side pollen rejection. Furthermore, double ILs (DILs) that combined different chromosomal regions overlapping ui3.1 differed significantly in their rate of UI, consistent with at least two genetic factors on chromosome three contributing quantitatively to interspecific pollen rejection. Together, our data indicate that loci on both chromosomes 3 and 12 are jointly required for the expression of UI between S. pennellii and S. lycopersicum, suggesting that coordinated molecular interactions among a relatively few loci underlie the expression of this postmating prezygotic barrier. In addition, in conjunction with previous data, at least one of these loci appears to also contribute to conspecific self-incompatibility (SI), consistent with a partially shared genetic basis between inter- and intraspecific mechanisms of postmating prezygotic female choice.


Reproduction ◽  
2011 ◽  
Vol 141 (2) ◽  
pp. 207-216 ◽  
Author(s):  
Christelle Stouder ◽  
Ariane Paoloni-Giacobino

Endocrine-disrupting chemicals (EDCs), among which methoxychlor (MXC), have been reported to affect the male reproductive system. This study evaluates the possible deleterious effects of MXC on imprinted genes. After administration of the chemical in adult male mice or in pregnant mice we analyzed by pyrosequencing possible methylation defects in two paternally imprinted (H19 and Meg3 (Gtl2)) and three maternally imprinted (Mest (Peg1), Snrpn, and Peg3) genes in the sperm and in the tail, liver, and skeletal muscle DNAs of the adult male mice and of the male offspring. MXC treatment of adult mice decreased the percentages of methylated CpGs of Meg3 and increased those of Mest, Snrpn, and Peg3 in the sperm DNA. MXC treatment of pregnant mice decreased the mean sperm concentrations by 30% and altered the methylation pattern of all the imprinted genes tested in the F1 offspring. In the latter case, MXC effects were transgenerational but disappeared gradually from F1 to F3. MXC did not affect imprinting in the somatic cells, suggesting that it exerts its damaging effects via the process of reprogramming that is unique to gamete development. A systematic analysis at the CpG level showed a heterogeneity in the CpG sensitivity to MXC. This observation suggests that not only DNA methylation but also other epigenetic modifications can explain the transgenerational effects of MXC. The reported effects of EDCs on human male spermatogenesis might be mediated by complex imprinting alterations analogous to those described in this study.


1997 ◽  
Vol 75 (2) ◽  
pp. 308-316 ◽  
Author(s):  
Marcel Le Pennec ◽  
Peter G. Beninger

To enhance our understanding of the reproductive biology of deep-sea hydrothermal vent mytilids, the histology of the male gonad and the ultrastructure of its gametes were studied in Bathymodiolus thermophilus, B. puteoserpentis, and B. elongatus. Specimens of B. thermophilus were collected at the 13°N site on the East Pacific ridge, while B. puteoserpentis were sampled from the Snake Pit site of the mid-Atlantic ridge and B. elongatus were obtained from the North Fiji Basin. Gonad histology conformed to the typical bivalve profile; the differences in the proportions of acinal and interacinal tissue, as well as differences in acinal fullness in B. puteoserpentis, indicate that gametogenesis is discontinuous in these deep-sea mytilids. Evidence of protandric hermaphroditism was observed in B. elongatus, which exhibited acini containing both maturing and residual male gametes and immature oocytes. The ultrastructural characteristics of the male gametes conform to those described for littoral bivalve species, and the spermatozoon is of the primitive type. No species-specific differences in spermatozoon ultrastructure were discerned. No evidence of bacterial inclusions was found in either the gametes or the associated gonad cells in any of the species examined. The male gametes are thus probably not vectors for the endosymbiotic bacteria that characterize the nutritional biology of the adults in this genus.


2012 ◽  
Vol 109 (42) ◽  
pp. 16762-16763 ◽  
Author(s):  
M. D. Griswold
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Giovanna Cacciola ◽  
Teresa Chioccarelli ◽  
Silvia Fasano ◽  
Riccardo Pierantoni ◽  
Gilda Cobellis

Spermatogenesis is a complex mechanism which allows the production of male gametes; it consists of mitotic, meiotic, and differentiation phases. Spermiogenesis is the terminal differentiation process during which haploid round spermatids undergo several biochemical and morphological changes, including extensive remodelling of chromatin and nuclear shape. Spermiogenesis is under control of endocrine, paracrine, and autocrine factors, like gonadotropins and testosterone. More recently, emerging pieces of evidence are suggesting that, among these factors, estrogens may have a role. To date, this is a matter of debate and concern because of the agonistic and antagonistic estrogenic effects that environmental chemicals may have on animal and human with damaging outcome on fertility. In this review, we summarize data which fuel this debate, with a particular attention to our recent results, obtained using type 1 cannabinoid receptor knockout male mice as animal model.


2006 ◽  
Vol 36 (4) ◽  
pp. 1054-1058 ◽  
Author(s):  
O K Hansen ◽  
E D Kjær

A paternity analysis using five microsatellite markers was conducted in a Danish clonal seed orchard with 13 Abies nordmanniana (Stev.) Spach clones. The purpose was to investigate potential seed-orchard dysfunctions, with special emphasis on nonequal pollen contributions and selfing. Male paternity was found for 232 seedlings germinated from seeds collected on three ramets, each of eight clones, and the relative contribution of each clone to the gene pool of male gametes was calculated. Furthermore, 49 ramets were genotyped to check for erroneous grafting. The effect of an unbalanced male contribution was quantified by means of two measures: (1) the status number (NS), which reflects buildup of coancestry in the seed-orchard crop as a result of a low number of clones and an unequal male contribution, and (2) the asymptotic variance effective population number (Ne(v)). The contributions by pollen donors from the 13 clones were highly skewed. Three clones were fathers to more than 75% of the progenies, while making up only 24% of the ramets in the seed orchard. Four clones sired no progenies at all. The unequal contribution on the male side corresponded to NS = 4.2 and Ne(v) = 5.8. Some selfing was observed, which may give rise to concern if clonal seed orchards with few clones are established. The estimated maximum pollen contamination from outside the seed orchard was 4.3%. No grafting–labelling errors were identified.


Sign in / Sign up

Export Citation Format

Share Document