scholarly journals A single-institution retrospective cohort study of first-line R-EPOCH chemoimmunotherapy for Richter syndrome demonstrating complex chronic lymphocytic leukaemia karyotype as an adverse prognostic factor

2017 ◽  
Vol 180 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Kerry A. Rogers ◽  
Ying Huang ◽  
Amy S. Ruppert ◽  
Galena Salem ◽  
Deborah M. Stephens ◽  
...  
Critical Care ◽  
2019 ◽  
Vol 23 (1) ◽  
Author(s):  
Edgar Santos ◽  
Arturo Olivares-Rivera ◽  
Sebastian Major ◽  
Renán Sánchez-Porras ◽  
Lorenz Uhlmann ◽  
...  

Abstract Objective Spreading depolarizations (SD) are characterized by breakdown of transmembrane ion gradients and excitotoxicity. Experimentally, N-methyl-d-aspartate receptor (NMDAR) antagonists block a majority of SDs. In many hospitals, the NMDAR antagonist s-ketamine and the GABAA agonist midazolam represent the current second-line combination treatment to sedate patients with devastating cerebral injuries. A pressing clinical question is whether this option should become first-line in sedation-requiring individuals in whom SDs are detected, yet the s-ketamine dose necessary to adequately inhibit SDs is unknown. Moreover, use-dependent tolerance could be a problem for SD inhibition in the clinic. Methods We performed a retrospective cohort study of 66 patients with aneurysmal subarachnoid hemorrhage (aSAH) from a prospectively collected database. Thirty-three of 66 patients received s-ketamine during electrocorticographic neuromonitoring of SDs in neurointensive care. The decision to give s-ketamine was dependent on the need for stronger sedation, so it was expected that patients receiving s-ketamine would have a worse clinical outcome. Results S-ketamine application started 4.2 ± 3.5 days after aSAH. The mean dose was 2.8 ± 1.4 mg/kg body weight (BW)/h and thus higher than the dose recommended for sedation. First, patients were divided according to whether they received s-ketamine at any time or not. No significant difference in SD counts was found between groups (negative binomial model using the SD count per patient as outcome variable, p = 0.288). This most likely resulted from the fact that 368 SDs had already occurred in the s-ketamine group before s-ketamine was given. However, in patients receiving s-ketamine, we found a significant decrease in SD incidence when s-ketamine was started (Poisson model with a random intercept for patient, coefficient − 1.83 (95% confidence intervals − 2.17; − 1.50), p < 0.001; logistic regression model, odds ratio (OR) 0.13 (0.08; 0.19), p < 0.001). Thereafter, data was further divided into low-dose (0.1–2.0 mg/kg BW/h) and high-dose (2.1–7.0 mg/kg/h) segments. High-dose s-ketamine resulted in further significant decrease in SD incidence (Poisson model, − 1.10 (− 1.71; − 0.49), p < 0.001; logistic regression model, OR 0.33 (0.17; 0.63), p < 0.001). There was little evidence of SD tolerance to long-term s-ketamine sedation through 5 days. Conclusions These results provide a foundation for a multicenter, neuromonitoring-guided, proof-of-concept trial of ketamine and midazolam as a first-line sedative regime.


BMJ Open ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. e032551 ◽  
Author(s):  
Graham Powell ◽  
John Logan ◽  
Victor Kiri ◽  
Simon Borghs

ObjectiveTo assess the evolution of antiepileptic drug (AED) treatment patterns and seizure outcomes in England from 2003 to 2016.Design, setting and participantsRetrospective cohort study of electronic medical records from Clinical Practice Research Datalink and National Health Service Digital Hospital Episode Statistics databases. Patients newly diagnosed with epilepsy were identified and followed until end of data availability. Three eras were defined starting 1 April 2003 (first National Institute for Health and Care Excellence (NICE) guideline); 1 September 2007 (Standard and New Antiepileptic Drugs publication); and 1 January 2012 (second NICE guideline).Outcome measuresTime from diagnosis to first AED; AED sequence; time from first AED to first 1-year remission period (no new AED attempts and no seizure-related healthcare events); time from first AED to refractoriness (third AED attempt regardless of reason); Kaplan-Meier analysis of time-to-event variables.Results4388 patients were included (mean follow-up: 6.8, 4.2 and 1.7 years by era). 84.6% of adults (≥16 years), 75.5% of children (<16) and 89.1% of elderly subgroup (65+) received treatment within 1 year; rates were generally stable over time. Treatment trends included reduced use of carbamazepine (adult first line, era 1: 34.9%; era 3: 10.7%) and phenytoin, earlier line and increased use of levetiracetam (adult first line, era 1: 2.6%; era 3: 26.2%) and lamotrigine (particularly in adults and elderly subgroup), and a larger number of different AEDs used. Valproate use shifted somewhat to later lines. Rates of 1-year remission within 2 years of starting treatment increased in adults (era 1: 71.9%; era 3: 81.4%) and elderly (era 1: 76.1%; era 3: 81.7%). Overall, 55.5% of patients relapsed after achieving 1-year remission. Refractoriness rates remained stable over time (~26% of adults within 5 years).ConclusionTreatment trends often were not aligned with era-relevant guidance. However, our results suggest a slight improvement in epilepsy treatment outcomes over the 13-year period.


Sign in / Sign up

Export Citation Format

Share Document