Let's mate here and now – seasonal constraints increase mating efficiency

2019 ◽  
Vol 44 (5) ◽  
pp. 623-629
Author(s):  
Maria J. Golab ◽  
Frank Johansson ◽  
Szymon Sniegula
Keyword(s):  
Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 795-805
Author(s):  
Jinah Kim ◽  
Jeanne P Hirsch

Abstract SSF1 and SSF2 are redundant essential yeast genes that, when overexpressed, increase the mating efficiency of cells containing a defective Ste4p Gβ subunit. To identify the precise function of these genes in mating, different responses to pheromone were assayed in cells that either lacked or overexpressed SSF gene products. Cells containing null alleles of both SSF1 and SSF2 displayed the normal transcriptional induction response to pheromone but were unable to form mating projections. Overexpression of SSF1 conferred the ability to form mating projections on cells containing a temperature-sensitive STE4 allele, but had only a small effect on transcriptional induction. SSF1 overexpression preferentially increased the mating efficiency of a strain containing a null allele of SPA2, a gene that functions specifically in cell morphology. To investigate whether Ssf1p plays a direct physical role in mating projection formation, its subcellular location was determined. An Ssf1p-GFP fusion was found to localize to the nucleolus, implying that the role of SSF gene products in projection formation is indirect. The region of Ssf1p-GFP localization in cells undergoing projection formation was larger and more diffuse, and was often present in a specific orientation with respect to the projection. Although the function of Ssf1p appears to originate in the nucleus, it is likely that it ultimately acts on one or more of the proteins that is directly involved in the morphological response to pheromone. Because many of the proteins required for projection formation during mating are also required for bud formation during vegetative growth, regulation of the activity or amount of one or more of these proteins by Ssf1p could explain its role in both mating and dividing cells.


2021 ◽  
Author(s):  
Matthew J Gadenne ◽  
Iris Hardege ◽  
Djordji Suleski ◽  
Paris Jaggers ◽  
Isabel Beets ◽  
...  

Sexual dimorphism occurs where different sexes of the same species display differences in characteristics not limited to reproduction. For the nematode Caenorhabditis elegans, in which the complete neuroanatomy has been solved for both hermaphrodites and males, sexually dimorphic features have been observed both in terms of the number of neurons and in synaptic connectivity. In addition, male behaviours, such as food-leaving to prioritise searching for mates, have been attributed to neuropeptides released from sex-shared or sex-specific neurons. In this study, we show that the lury-1 neuropeptide gene shows a sexually dimorphic expression pattern; being expressed in pharyngeal neurons in both sexes but displaying additional expression in tail neurons only in the male. We also show that lury-1 mutant animals show sex differences in feeding behaviours, with pharyngeal pumping elevated in hermaphrodites but reduced in males. LURY-1 also modulates male mating efficiency, influencing motor events during contact with a hermaphrodite. Our findings indicate sex-specific roles of this peptide in feeding and reproduction in C. elegans, providing further insight into neuromodulatory control of sexually dimorphic behaviours.


2018 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
Lalu Vijayakrishnapillai ◽  
John Desmarais ◽  
Michael Groeschen ◽  
Michael Perlin

The PTEN/PI3K/mTOR signal transduction pathway is involved in the regulation of biological processes such as metabolism, cell growth, cell proliferation, and apoptosis. This pathway has been extensively studied in mammals, leading to the conclusion that PTEN is a major tumor suppressor gene. PTEN orthologues have been characterized in a variety of organisms, both vertebrates and non-vertebrates, and studies of the associated PTEN/PI3K/mTOR pathway indicate that it is widely conserved. Studies in fungal systems indicated a role of PTEN in fungal defense mechanisms in Candida albicans, and in the developmental process of sporulation in Saccharomyces cerevisiae. The present study was aimed at investigating the role of the PTEN ortholog, ptn1, in Ustilago maydis, the pathogen of maize. U. maydis ptn1 mutant strains where ptn1 gene is deleted or overexpressed were examined for phenotypes associate with mating, virulence and spore formation. While the overexpression of ptn1 had no substantial effects on virulence, ptn1 deletion strains showed slight reductions in mating efficiency and significant reductions in virulence; tumor formation on stem and/or leaves were severely reduced. Moreover, tumors, when present, had significantly lower levels of mature teliospores, and the percent germination of such spores was similarly reduced. Thus, ptn1 is required for these important aspects of virulence in this fungus.


Genetics ◽  
1985 ◽  
Vol 111 (4) ◽  
pp. 795-804
Author(s):  
Donald A Gailey ◽  
Jeffrey C Hall ◽  
Richard W Siegel

ABSTRACT Male Drosophila melanogaster that have courted newly-emerged males can modify their subsequent courtship behavior to avoid further courtship with immature males for up to 6 hr (previously reported). Here, it was hypothesized that such an experience-dependent modification would afford a mating advantage to normal males over males that carried a mutation that affects learning and memory. Coisogenic lines were constructed which varied at the dunce gene (dnc  + and dnc  M14 alleles) in order to test this hypothesis. Whether previously experienced with immature males or not, dnc  + and dnc  M14 males were indistinguishable in their response and mating efficiency when individually paired with virgin females. However, courtship performance of dnc  + and dnc  M14 males was different if they were first experienced with immature males and were then individually tested in an artificial population of nine immature males and one virgin female. In this situation, dnc  + males spent much less time in courtship with immature males and achieved copulation in one-third the time required for dnc  M14 males. As a control, the behavior and mating efficiency of courtship-naive dnc  + and dnc  M14 males in the artificial population was indistinguishable. In competition for a single virgin female, experienced dnc  M14 males showed a slight mating advantage over experienced dnc  + males. But when competition by experienced males for a single virgin female took place in the presence of nine immature males, dnc  + males were the successful maters in three-fourths of the trials.


1982 ◽  
Vol 2 (8) ◽  
pp. 897-903 ◽  
Author(s):  
E P Sena

The effects of culture supernatant treatment on subsequent matings between pretreated a and alpha Saccharomyces cerevisiae cells were studied. For each experiment, pairs of a and alpha [rho+] or [rho- rho0] cells in the logarithmic growth phase in defined minimal medium were pretreated for a total of 15 min (by exchanging their cell-free supernatants or by mixing samples of a and alpha cell cultures) and then mated in defined minimal (YNB) or enriched (YEP) liquid medium. All pretreated cells, regardless of treatment procedure, initiated cell fusion 15 to 35 min faster than did their nontreated counterparts. In all cases, pretreated cells mated 8 to 20% more efficiently than did nonpretreated ones. Regardless of the strains, the hierarchy of mating efficiency was always treated YEP greater than untreated YEP greater than treated YNB greater than untreated YNB. The cell fusion kinetics in alpha [rho+] X a [rho-] crosses were most affected by pretreatment (delta 30 to 35 min), whereas [rho+] X [rho+] crosses were least affected (delta 15 min). These results are discussed in relation to the functions known for a and alpha pheromones. The successful pretreatment regimes were used to design new rapid and efficient techniques for mating YNB-grown log-phase cells in either YNB or YEP liquid media. These techniques can be used for small- or large-scale mating, and because of their inherent media flexibility, they have many potential applications to future studies on mating-specific or intrazygotic phenomena.


1982 ◽  
Vol 2 (8) ◽  
pp. 897-903
Author(s):  
E P Sena

The effects of culture supernatant treatment on subsequent matings between pretreated a and alpha Saccharomyces cerevisiae cells were studied. For each experiment, pairs of a and alpha [rho+] or [rho- rho0] cells in the logarithmic growth phase in defined minimal medium were pretreated for a total of 15 min (by exchanging their cell-free supernatants or by mixing samples of a and alpha cell cultures) and then mated in defined minimal (YNB) or enriched (YEP) liquid medium. All pretreated cells, regardless of treatment procedure, initiated cell fusion 15 to 35 min faster than did their nontreated counterparts. In all cases, pretreated cells mated 8 to 20% more efficiently than did nonpretreated ones. Regardless of the strains, the hierarchy of mating efficiency was always treated YEP greater than untreated YEP greater than treated YNB greater than untreated YNB. The cell fusion kinetics in alpha [rho+] X a [rho-] crosses were most affected by pretreatment (delta 30 to 35 min), whereas [rho+] X [rho+] crosses were least affected (delta 15 min). These results are discussed in relation to the functions known for a and alpha pheromones. The successful pretreatment regimes were used to design new rapid and efficient techniques for mating YNB-grown log-phase cells in either YNB or YEP liquid media. These techniques can be used for small- or large-scale mating, and because of their inherent media flexibility, they have many potential applications to future studies on mating-specific or intrazygotic phenomena.


1971 ◽  
Vol 17 (3) ◽  
pp. 261-266 ◽  
Author(s):  
Mark Achtman

SUMMARYA technique using microserological equipment is described whereby up to 144 quantitative interrupted bacterial matings may be performed concurrently. The technique is easy to use, accurate and reproducible, and eliminates the need for agar plates. However, it is only suitable for 40–42 °C matings and mating efficiency is approximately threefold lower than in test tubes.


1994 ◽  
Vol 14 (7) ◽  
pp. 4501-4508 ◽  
Author(s):  
X J Chen ◽  
G D Clark-Walker

A Kluyveromyces lactis mutant, hypersensitive to the DNA-targeting drugs ethidium bromide (EtBr), berenil, and HOE15030, can be complemented by a wild-type gene with homology to SIR2 of Saccharomyces cerevisiae (ScSIR2). The deduced amino acid sequence of the K. lactis Sir2 protein has 53% identity with ScSir2 protein but is 108 residues longer. K. lactis sir2 mutants show decreased mating efficiency, deficiency in sporulation, an increase in recombination at the ribosomal DNA locus, and EtBr-induced death. Some functional equivalence between the Sir2 proteins of K. lactis and S. cerevisiae has been demonstrated by introduction of ScSIR2 into a sir2 mutant of K. lactis. Expression of ScSIR2 on a multicopy plasmid restores resistance to EtBr and complements sporulation deficiency. Similarly, mating efficiency of a sir2 mutant of S. cerevisiae is partially restored by K. lactis SIR2 on a multicopy plasmid. Although these observations suggest that there has been some conservation of Sir2 protein function, a striking difference is that sir2 mutants of S. cerevisiae, unlike their K. lactis counterparts, are not hypersensitive to DNA-targeting drugs.


1961 ◽  
Vol 56 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Lavon J. Sumption

Evidence of natural selection for certain aspects of mating efficiency in swine are advanced based on preliminary studies with thirty-one sires, fiftyeight dams and their progeny. Selective fertilization was conclusively demonstrated. Variations in male and female mating behaviour were sufficiently large to indicate considerable non-randomness of mating frequency under the conditions of multiple sire mating (i.e. group exposure of dams to selected sires). The combined effects of the separate phenomena of selective fertilization and mating behaviour are discussed in relation to their evolutionary significance in animal breeding.


Sign in / Sign up

Export Citation Format

Share Document