scholarly journals THE IMPACT OF SPATIAL SCALE AND HABITAT CONFIGURATION ON PATTERNS OF TRAIT VARIATION AND LOCAL ADAPTATION IN A WILD PLANT PARASITE

Evolution ◽  
2013 ◽  
Vol 68 (1) ◽  
pp. 176-189 ◽  
Author(s):  
Ayco J. M. Tack ◽  
Felix Horns ◽  
Anna‐Liisa Laine
Author(s):  
Binia De Cahsan ◽  
Katrin Kiemel ◽  
Michael Westbury ◽  
Maike Lauritsen ◽  
Marijke Autenrieth ◽  
...  

Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden, this decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after presumed illegal release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (as a proxy for fitness) of introgressed and non-introgressed populations, and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition. We observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency towards higher body weight, relative to regional non-introgressed populations. These differences were not observed among introgressed and non-introgressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than southern populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of struggling range margin populations without distortion of local adaptation.


2020 ◽  
Vol 12 (3) ◽  
pp. 570 ◽  
Author(s):  
Gerard Portal ◽  
Thomas Jagdhuber ◽  
Mercè Vall-llossera ◽  
Adriano Camps ◽  
Miriam Pablos ◽  
...  

In the last decade, technological advances led to the launch of two satellite missions dedicated to measure the Earth’s surface soil moisture (SSM): the ESA’s Soil Moisture and Ocean Salinity (SMOS) launched in 2009, and the NASA’s Soil Moisture Active Passive (SMAP) launched in 2015. The two satellites have an L-band microwave radiometer on-board to measure the Earth’s surface emission. These measurements (brightness temperatures TB) are then used to generate global maps of SSM every three days with a spatial resolution of about 30–40 km and a target accuracy of 0.04 m3/m3. To meet local applications needs, different approaches have been proposed to spatially disaggregate SMOS and SMAP TB or their SSM products. They rely on synergies between multi-sensor observations and are built upon different physical assumptions. In this study, temporal and spatial characteristics of six operational SSM products derived from SMOS and SMAP are assessed in order to diagnose their distinct features, and the rationale behind them. The study is focused on the Iberian Peninsula and covers the period from April 2015 to December 2017. A temporal inter-comparison analysis is carried out using in situ SSM data from the Soil Moisture Measurements Station Network of the University of Salamanca (REMEDHUS) to evaluate the impact of the spatial scale of the different products (1, 3, 9, 25, and 36 km), and their correspondence in terms of temporal dynamics. A spatial analysis is conducted for the whole Iberian Peninsula with emphasis on the added-value that the enhanced resolution products provide based on the microwave-optical (SMOS/ERA5/MODIS) or the active–passive microwave (SMAP/Sentinel-1) sensor fusion. Our results show overall agreement among time series of the products regardless their spatial scale when compared to in situ measurements. Still, higher spatial resolutions would be needed to capture local features such as small irrigated areas that are not dominant at the 1-km pixel scale. The degree to which spatial features are resolved by the enhanced resolution products depend on the multi-sensor synergies employed (at TB or soil moisture level), and on the nature of the fine-scale information used. The largest disparities between these products occur in forested areas, which may be related to the reduced sensitivity of high-resolution active microwave and optical data to soil properties under dense vegetation.


2019 ◽  
Vol 147 ◽  
pp. 126-137 ◽  
Author(s):  
Anthony W.J. Bicknell ◽  
Emma V. Sheehan ◽  
Brendan J. Godley ◽  
Philip D. Doherty ◽  
Matthew J. Witt

Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 602
Author(s):  
Ina Aneva ◽  
Petar Zhelev ◽  
Simeon Lukanov ◽  
Mariya Peneva ◽  
Kiril Vassilev ◽  
...  

Studies on the impact of agricultural practices on plant diversity provide important information for policy makers and the conservation of the environment. The aim of the present work was to evaluate wild plant diversity across the agroecosystems in two contrasting regions of Bulgaria; Pazardzhik-Plovdiv (representing agroecosystems in the lowlands) and Western Stara Planina (the Balkan Mountains, representing agroecosystems in the foothills of the mountains). This study conducted a two-year assessment of plant diversity in different types of agricultural and forest ecosystems, representing more than 30 land use types. Plant diversity, measured by species number, was affected by the land use type only in Pazardzhik-Plovdiv region. More pronounced was the effect of the groups of land use types on the diversity, measured by the mean species number per scoring plot. Climatic conditions, measured by 19 bioclimatic variables, were the most important factor affecting plant species diversity. Six bioclimatic variables had a significant effect on the plant diversity, and the effect was more pronounced when the analysis considered pooled data of the two regions. The highest plant diversity was found on grazing land with sparse tree cover, while the lowest one was in the land use types representing annual crops or fallow. The study also established a database on weed species, relevant to agriculture. A number of common weeds were found in the Pazardzhik-Plovdiv region, while the most frequent species in the Western Stara Planina region were indigenous ones. Overall, the natural flora of Western Stara Planina was more conserved; eleven orchid species with conservation significance were found in the pastures and meadows in that region. The present study is the first attempt in Bulgaria to characterize the plant diversity across diverse agroecosystems representing many different land use types and environmental conditions. The results can contribute to nature conservation, biodiversity, and the sustainable use of plant resources.


2011 ◽  
Vol 12 (2) ◽  
pp. 152-160 ◽  
Author(s):  
Jana Raabová ◽  
Zuzana Münzbergová ◽  
Markus Fischer

2009 ◽  
Vol 66 (5) ◽  
pp. 829-835 ◽  
Author(s):  
G. J. Piet ◽  
F. J. Quirijns

The impact of a bottom trawl fishery on fish or benthos is often determined by multiplying the frequency of the passing of the trawl by a factor for the effect (i.e., % mortality) of the singular passing of the gear. As fishing intensity in an area is not homogeneously distributed, it is necessary to determine the proportions of the area that are fished with different trawling frequencies, as these subareas together contribute to the overall species’ mortality. In this study, we show that the perceived proportion of the area fished with a specific trawling frequency depends upon the spatial and temporal scale used. A smaller spatial scale results in an increased perceived patchiness of the fishing intensity, while a longer time period does the opposite. The implication is that to determine the fishing-induced mortality of a particular species, the trawling frequency needs to be determined at those spatio-temporal scales that are appropriate considering the species’ spatial processes (e.g., dispersion) or temporal processes described by life history characteristics.


2017 ◽  
Vol 153 (2) ◽  
pp. 105-116 ◽  
Author(s):  
Olga Raskina

In wild plant populations, chromosome rearrangements lead to the wide intraspecific polymorphisms in the abundance and patterns of highly repetitive DNA. However, despite the large amount of accumulated data, the impact of the complex repetitive DNA fraction on genome reorganization and functioning and the mechanisms balancing and maintaining the structural integrity of the genome are not fully understood. Homologous recombination is thought to play a key role in both genome reshuffling and stabilization, while the contribution of nonhomologous recombination seems to be undervalued. Here, tandem repeat patterns and dynamics during pollen mother cell development were addressed, with a focus on the meiotic recombination that determines chromosome/genome repatterning and stabilization under cross-pollination and artificial hybridization in wild goatgrass, Aegilops speltoides. Native plants from contrasting allopatric populations and artificially created intraspecific hybrids were investigated using a FISH approach. Cytogenetic analysis uncovered a wide spectrum of genotype- and cell-specific chromosomal rearrangements, suggesting intensive repatterning of both parental and hybrid genomes. The data obtained provide evidence that repetitive elements serve as overabundant and ubiquitous resources for maintaining chromosome architecture/genome integrity through homologous and nonhomologous recombination at the intraorganismal level, and genotype-specific repatterning underlies intrapopulation polymorphisms and intraspecific diversification in the wild.


2007 ◽  
Vol 20 (4) ◽  
pp. 1563-1576 ◽  
Author(s):  
S. A. SÆTHER ◽  
P. FISKE ◽  
J. A. KÅLÅS ◽  
A. KURESOO ◽  
L. LUIGUJÕE ◽  
...  

2018 ◽  
Author(s):  
Javier Montero-Pau ◽  
Africa Gomez ◽  
Manuel Serra

Populations of passively dispersed organisms in continental aquatic habitats typically show high levels of neutral genetic differentiation, despite their high dispersal capabilities. Several evolutionary factors, including founder events and local adaptation, and life cycle features such as high population growth rates and the presence of propagule banks, have been proposed to be responsible for this paradox. Here, we have modeled the colonization process in these organisms to assess the impact of migration rate, growth rate, population size, local adaptation and life-cycle features on their population genetic structure. Our simulation results show that the strongest effect on population structure is caused by persistent founder effects, resulting from the interaction of a few population founders, high population growth rates, large population sizes and the presence of diapausing egg banks. In contrast, the role of local adaptation, genetic hitchhiking and migration is limited to small populations in these organisms. Our results indicate that local adaptation could have different impact on genetic structure in different groups of zooplankters.


Sign in / Sign up

Export Citation Format

Share Document