scholarly journals An evolutionary quantitative genetics model for phenotypic (co)variances under limited dispersal, with an application to socially synergistic traits

Evolution ◽  
2019 ◽  
Vol 73 (9) ◽  
pp. 1695-1728 ◽  
Author(s):  
Charles Mullon ◽  
Laurent Lehmann

2018 ◽  
Author(s):  
Charles Mullon ◽  
Laurent Lehmann

AbstractDarwinian evolution consists of the gradual transformation of heritable quantitative traits due to natural selection and the input of random variation by mutation. Here, we use a quantitative genetics approach to investigate the coevolution of multiple traits under selection, mutation, and limited dispersal. We track the dynamics of trait means and variance-covariances between traits that experience frequency-dependent selection. Assuming a multivariate-normal trait distribution, we recover classical dynamics of quantitative genetics, as well as stability and evolutionary branching conditions of invasion analyses, except that due to limited dispersal, selection depends on indirect fitness effects and relatedness. In particular, correlational selection that associates different traits within-individuals depends on the fitness effects of such associations between-individuals. These kin selection effects can be as relevant as pleiotropy for correlation between traits. We illustrate this with an example of the coevolution of two social traits whose association within-individual is costly but synergistically beneficial between-individuals. As dispersal becomes limited and relatedness increases, associations between-traits between-individuals become increasingly targeted by correlational selection. Consequently, the trait distribution goes from being bimodal with a negative correlation under panmixia to unimodal with a positive correlation under limited dispersal. More broadly, our approach can help understand the evolution of intra-specific variation.



2013 ◽  
Vol 1 (1) ◽  
pp. 3
Author(s):  
Hanny Tioho

In order to elucidate the patterns of dispersal in scleractinian coral Pocillopora damicornis near the northern limit of its latitudinal range, a total of 50 colonies (15-25 cm in diameter) of this coral were collected from Ooshima Island, Japan, and transplanted within one hour to the area of Satsuki, where they were not present before. Three concentric areas were established such as; the parental area (PA), intermediate area (IA) and outer area (OA). A total of 831 new corals were found in 1997 while 54.3% of these occurred in PA, 30.5% in IA and 15.1% in OA. In 1998, 52.3% of recruits settled in PA, 30.5% in IA and 17.2% in OA. A significant difference in the density of recruits was found among three areas, but recruit density was not significantly different between years and there was no interaction between area and year. There was no significant difference in the number of recruits among different directions, indicating no tendency for larvae to be concentrated in one particular direction. The present study suggests that the planulae of P. damicornis have limited dispersal distances at high-latitudes© Untuk menjelaskan pola penyebaran karang scleractinia Pocillopora damicornis yang berada di batas Utara penyebarannya, total 50 koloni (15-25 cm) dari karang ini dikumpulkan dari Pulau Ooshima, Jepang, dan di transplantasikan dalam waktu satu jam ke daerah Satsuki yang tidak ditemukan jenis ini. Tiga daerah ditetapkan yaitu, Daerah Induk (PA), Daerah Tengah (IA), dan Daerah Luar (OA). Sebanyak 831 karang baru ditemukan pada tahun 1997, sementara 54,3% ditemukan di PA, 30,5% di IA dan 15,1% di OA. Pada tahun 1998, 52,3% ditemukan di PA, 30,5% di IA, dan 17,2% di OA. Ditemukan perbedaan yang signifikan untuk kepadatan antara ketiga daerah tersebut, tetapi tidak ada perbedaan yang signifikan antar tahun dan tidak ada interaksi antara daerah dan tahun. Tidak ada perbedaan yang signifikan dalam jumlah pada arah yang berbeda sehingga hal ini menunjukkan tidak ada kecenderungan bagi larva untuk terkonsentrasi pada satu arah tertentu. Penelitian ini menunjukkan bahwa planula P.



Author(s):  
Bruce Walsh ◽  
Michael Lynch

Quantitative traits—be they morphological or physiological characters, aspects of behavior, or genome-level features such as the amount of RNA or protein expression for a specific gene—usually show considerable variation within and among populations. Quantitative genetics, also referred to as the genetics of complex traits, is the study of such characters and is based on mathematical models of evolution in which many genes influence the trait and in which non-genetic factors may also be important. Evolution and Selection of Quantitative Traits presents a holistic treatment of the subject, showing the interplay between theory and data with extensive discussions on statistical issues relating to the estimation of the biologically relevant parameters for these models. Quantitative genetics is viewed as the bridge between complex mathematical models of trait evolution and real-world data, and the authors have clearly framed their treatment as such. This is the second volume in a planned trilogy that summarizes the modern field of quantitative genetics, informed by empirical observations from wide-ranging fields (agriculture, evolution, ecology, and human biology) as well as population genetics, statistical theory, mathematical modeling, genetics, and genomics. Whilst volume 1 (1998) dealt with the genetics of such traits, the main focus of volume 2 is on their evolution, with a special emphasis on detecting selection (ranging from the use of genomic and historical data through to ecological field data) and examining its consequences. This extensive work of reference is suitable for graduate level students as well as professional researchers (both empiricists and theoreticians) in the fields of evolutionary biology, genetics, and genomics. It will also be of particular relevance and use to plant and animal breeders, human geneticists, and statisticians.



Author(s):  
Bruce Walsh ◽  
Michael Lynch

One of the major unresolved issues in quantitative genetics is what accounts for the amount of standing genetic variation in traits. A wide range of models, all reviewed in this chapter, have been proposed, but none fit the data, either giving too much variation or too little apparent stabilizing selection.



Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 84
Author(s):  
Wolfgang Paill ◽  
Stephan Koblmüller ◽  
Thomas Friess ◽  
Barbara-Amina Gereben-Krenn ◽  
Christian Mairhuber ◽  
...  

The last ice age considerably influenced distribution patterns of extant species of plants and animals, with some of them now inhabiting disjunct areas in the subarctic/arctic and alpine regions. This arctic-alpine distribution is characteristic for many cold-adapted species with a limited dispersal ability and can be found in many invertebrate taxa, including ground beetles. The ground beetle Pterostichus adstrictus Eschscholtz, 1823 of the subgenus Bothriopterus was previously known to have a holarctic-circumpolar distribution, in Europe reaching its southern borders in Wales and southern Scandinavia. Here, we report the first findings of this species from the Austrian Ötztal Alps, representing also the southernmost edge of its currently known distribution, confirmed by the comparison of morphological characters to other Bothriopterus species and DNA barcoding data. Molecular data revealed a separation of the Austrian and Finish specimens with limited to no gene flow at all. Furthermore, we present the first data on habitat preference and seasonality of P. adstrictus in the Austrian Alps.



Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 1053-1060
Author(s):  
Joel R Peck

Abstract This study presents a mathematical model that allows for some offspring to be dispersed at random, while others stay close to their mothers. A single genetic locus is assumed to control fertility, and this locus is subject to the occurrence of deleterious mutations. It is shown that, at equilibrium, the frequency of deleterious mutations in the population is inversely related to the rate of dispersal. This is because dispersal of offspring leads to enhanced competition among adults. The results also show that sexual reproduction can lead to a decrease in the equilibrium frequency of deleterious mutations. The reason for this relationship is that sex involves the dispersal of genetic material, and thus, like the dispersal of offspring, sex enhances competition among adults. The model is described using the example of a hermaphroditic plant population. However, the results should apply to animal populations as well.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florentine Riquet ◽  
Christiane-Arnilda De Kuyper ◽  
Cécile Fauvelot ◽  
Laura Airoldi ◽  
Serge Planes ◽  
...  

AbstractCystoseira sensu lato (Class Phaeophyceae, Order Fucales, Family Sargassaceae) forests play a central role in marine Mediterranean ecosystems. Over the last decades, Cystoseira s.l. suffered from a severe loss as a result of multiple anthropogenic stressors. In particular, Gongolaria barbata has faced multiple human-induced threats, and, despite its ecological importance in structuring rocky communities and hosting a large number of species, the natural recovery of G. barbata depleted populations is uncertain. Here, we used nine microsatellite loci specifically developed for G. barbata to assess the genetic diversity of this species and its genetic connectivity among fifteen sites located in the Ionian, the Adriatic and the Black Seas. In line with strong and significant heterozygosity deficiencies across loci, likely explained by Wahlund effect, high genetic structure was observed among the three seas (ENA corrected FST = 0.355, IC = [0.283, 0.440]), with an estimated dispersal distance per generation smaller than 600 m, both in the Adriatic and Black Sea. This strong genetic structure likely results from restricted gene flow driven by geographic distances and limited dispersal abilities, along with genetic drift within isolated populations. The presence of genetically disconnected populations at small spatial scales (< 10 km) has important implications for the identification of relevant conservation and management measures for G. barbata: each population should be considered as separated evolutionary units with dedicated conservation efforts.



2021 ◽  
pp. 100209
Author(s):  
Marcin Grzybowski ◽  
Nuwan K. Wijewardane ◽  
Abbas Atefi ◽  
Yufeng Ge ◽  
James C. Schnable


Sign in / Sign up

Export Citation Format

Share Document