scholarly journals Highly restricted dispersal in habitat-forming seaweed may impede natural recovery of disturbed populations

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florentine Riquet ◽  
Christiane-Arnilda De Kuyper ◽  
Cécile Fauvelot ◽  
Laura Airoldi ◽  
Serge Planes ◽  
...  

AbstractCystoseira sensu lato (Class Phaeophyceae, Order Fucales, Family Sargassaceae) forests play a central role in marine Mediterranean ecosystems. Over the last decades, Cystoseira s.l. suffered from a severe loss as a result of multiple anthropogenic stressors. In particular, Gongolaria barbata has faced multiple human-induced threats, and, despite its ecological importance in structuring rocky communities and hosting a large number of species, the natural recovery of G. barbata depleted populations is uncertain. Here, we used nine microsatellite loci specifically developed for G. barbata to assess the genetic diversity of this species and its genetic connectivity among fifteen sites located in the Ionian, the Adriatic and the Black Seas. In line with strong and significant heterozygosity deficiencies across loci, likely explained by Wahlund effect, high genetic structure was observed among the three seas (ENA corrected FST = 0.355, IC = [0.283, 0.440]), with an estimated dispersal distance per generation smaller than 600 m, both in the Adriatic and Black Sea. This strong genetic structure likely results from restricted gene flow driven by geographic distances and limited dispersal abilities, along with genetic drift within isolated populations. The presence of genetically disconnected populations at small spatial scales (< 10 km) has important implications for the identification of relevant conservation and management measures for G. barbata: each population should be considered as separated evolutionary units with dedicated conservation efforts.

2020 ◽  
Vol 93 (5) ◽  
pp. 652-661 ◽  
Author(s):  
Georgina Sola ◽  
Verónica El Mujtar ◽  
Leonardo Gallo ◽  
Giovanni G Vendramin ◽  
Paula Marchelli

Abstract Understanding the impact of management on the dispersal potential of forest tree species is pivotal in the context of global change, given the implications of gene flow on species evolution. We aimed to determine the effect of logging on gene flow distances in two Nothofagus species from temperate Patagonian forests having high ecological relevance and wood quality. Therefore, a total of 778 individuals (mature trees and saplings) of Nothofagus alpina and N. obliqua, from a single plot managed 20 years ago (2.85 hectares), were mapped and genotyped at polymorphic nuclear microsatellite loci. Historical estimates of gene dispersal distance (based on fine-scale spatial genetic structure) and contemporary estimates of seed and pollen dispersal (based on spatially explicit mating models) were obtained. The results indicated restricted gene flow (gene distance ≤ 45 m, both pollen and seed), no selfing and significant seed and pollen immigration from trees located outside the studied plot but in the close surrounding area. The size of trees (diameter at breast height and height) was significantly associated with female and/or male fertility. The significant fine-scale spatial genetic structure was consistent with the restricted seed and pollen dispersal. Moreover, both estimates of gene dispersal (historical and contemporary) gave congruent results. This suggests that the recent history of logging within the study area has not significantly influenced on patterns of gene flow, which can be explained by the silviculture applied to the stand. The residual tree density maintained species composition, and the homogeneous spatial distribution of trees allowed the maintenance of gene dispersal. The short dispersal distance estimated for these two species has several implications both for understanding the evolution of the species and for defining management, conservation and restoration actions. Future replication of this study in other Nothofagus Patagonian forests would be helpful to validate our conclusions.


2005 ◽  
Vol 62 (8) ◽  
pp. 1874-1886 ◽  
Author(s):  
Daniel Gomez-Uchida ◽  
Michael A Banks

By pooling or removing samples of small size, we investigated how results from microsatellite analyses of spatial genetic structure in darkblotched rockfish (Sebastes crameri) were affected. Genotypes from six and seven microsatellite loci from 1206 specimens collected offshore from Washington to California were employed in the analyses. Sample sizes varied greatly among locations (n = 11–114). When adjacent samples of n < 25 were pooled using an absolute genetic distance (FST ≤ 0), the correlation between genetic and geographic distance found in the original data set increased nearly twofold, and overall FST (95% confidence interval) increased from 0.001 (0.000–0.002) to 0.002 (0.001–0.003). Removing samples where n < 25 gave a similar result, yet the correlation increase was smaller. Another pooling strategy based on similarity tests allowed larger sizes in composite samples (n > 100) and further increased the correlation, although this strategy did not raise overall FST. These results indicate that under genetic isolation by distance, excessive pooling might not enhance the overall genetic differentiation among populations. The regression slope in isolation by distance plots was robust throughout all treatments, and its value suggests limited dispersal distance on this species.


2020 ◽  
Author(s):  
Shiang-Fan Chen ◽  
Chung-Hao Juan ◽  
Stephen Rossiter ◽  
Teruo Kinjo ◽  
Dai Fukui ◽  
...  

AbstractSmall isolated populations are vulnerable to both stochastic events and the negative consequences of genetic drift. For threatened species, the genetic management of such populations has therefore become a crucial aspect of conservation. Flying foxes (Pteropus spp, Chiroptera) are keystone species with essential roles in pollination and seed dispersal in tropical and subtropical ecosystems. Yet many flying fox species are also of conservation concern, having experienced dramatic population declines driven by habitat loss and hunting. The Ryukyu flying fox (Pteropus dasymallus) ranges from Japan and Taiwan to the northern Philippines, and has undergone precipitous population crashes on several islands in recent decades. To assess population genetic structure and diversity in P. dasymallus, and its likely causes, we analyzed mitochondrial and microsatellite DNA. Both markers showed significant genetic differentiation among most island populations with patterns of isolation-by-distance. However, while mitochondrial haplotypes showed some mixing across the region, likely reflecting historical colonization and/or dispersal events, microsatellites markers showed clear subdivisions corresponding to the position of deep ocean trenches. The current distribution of P. dasymallus and its subspecific diversity therefore appears to have arisen through vicariance coupled with a long history of restricted gene flow across oceanic barriers. We conclude that isolated island subgroups should be managed separately, with efforts directed at reducing further declines.


Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 119
Author(s):  
Adrianna Kilikowska ◽  
Monika Mioduchowska ◽  
Anna Wysocka ◽  
Agnieszka Kaczmarczyk-Ziemba ◽  
Joanna Rychlińska ◽  
...  

Mussels of the family Unionidae are important components of freshwater ecosystems. Alarmingly, the International Union for Conservation of Nature and Natural Resources Red List of Threatened Species identifies almost 200 unionid species as extinct, endangered, or threatened. Their decline is the result of human impact on freshwater habitats, and the decrease of host fish populations. The Thick Shelled River Mussel Unio crassus Philipsson, 1788 is one of the examples that has been reported to show a dramatic decline of populations. Hierarchical organization of riverine systems is supposed to reflect the genetic structure of populations inhabiting them. The main goal of this study was an assessment of the U. crassus genetic diversity in river ecosystems using hierarchical analysis. Different molecular markers, the nuclear ribosomal internal transcribed spacer ITS region, and mitochondrial DNA genes (cox1 and ndh1), were used to examine the distribution of U. crassus among-population genetic variation at multiple spatial scales (within rivers, among rivers within drainages, and between drainages of the Neman and Vistula rivers). We found high genetic structure between both drainages suggesting that in the case of the analyzed U. crassus populations we were dealing with at least two different genetic units. Only about 4% of the mtDNA variation was due to differences among populations within drainages. However, comparison of population differentiation within drainages for mtDNA also showed some genetic structure among populations within the Vistula drainage. Only one haplotype was shared among all Polish populations whereas the remainder were unique for each population despite the hydrological connection. Interestingly, some haplotypes were present in both drainages. In the case of U. crassus populations under study, the Mantel test revealed a relatively strong relationship between genetic and geographical distances. However, in detail, the pattern of genetic diversity seems to be much more complicated. Therefore, we suggest that the observed pattern of U. crassus genetic diversity distribution is shaped by both historical and current factors i.e. different routes of post glacial colonization and history of drainage systems, historical gene flow, and more recent habitat fragmentation due to anthropogenic factors.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kelly B. Klingler ◽  
Joshua P. Jahner ◽  
Thomas L. Parchman ◽  
Chris Ray ◽  
Mary M. Peacock

Abstract Background Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada. Results Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006–0.0009; θW = 0.0005–0.0007) relative to populations in California (π = 0.0014–0.0019; θW = 0.0011–0.0017) and the Rocky Mountains (π = 0.0025–0.0027; θW = 0.0021–0.0024), indicating substantial genetic drift in these isolated populations. Tajima’s D was positive for all sites (D = 0.240–0.811), consistent with recent contraction in population sizes range-wide. Conclusions Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.


2020 ◽  
pp. 1-7
Author(s):  
Alfonso Langle-Flores ◽  
Adriana Aguilar Rodríguez ◽  
Humberto Romero-Uribe ◽  
Julia Ros-Cuéllar ◽  
Juan José Von Thaden

Summary Payments for ecosystem services (PES) programmes have been considered an important conservation mechanism to avoid deforestation. These environmental policies act in social and ecological contexts at different spatial scales. We evaluated the social-ecological fit between stakeholders and ecosystem processes in a local PES programme across three levels: social, ecological and social-ecological. We explored collaboration among stakeholders, assessed connectivity between forest units and evaluated conservation activity links between stakeholders and forest units. In addition, to increase programme effectiveness, we classified forest units based on their social and ecological importance. Our main findings suggest that non-governmental organizations occupy brokerage positions between landowners and government in a dense collaboration network. We also found a partial spatial misfit between conservation activity links and the forest units that provide the most hydrological services to Xalapa. We conclude that conservation efforts should be directed towards the middle and high part of the Pixquiac sub-watershed and that the role of non-governmental organizations as mediators should be strengthened to increase the efficiency and effectiveness of the local PES programme.


Nematology ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 165-177 ◽  
Author(s):  
Rasha Haj Nuaima ◽  
Johannes Roeb ◽  
Johannes Hallmann ◽  
Matthias Daub ◽  
Holger Heuer

Summary Characterising the non-neutral genetic variation within and among populations of plant-parasitic nematodes is essential to determine factors shaping the population genetic structure. This study describes the genetic variation of the parasitism gene vap1 within and among geographic populations of the beet cyst nematode Heterodera schachtii. Forty populations of H. schachtii were sampled at four spatial scales: 695 km, 49 km, 3.1 km and 0.24 km. DGGE fingerprinting showed significant differences in vap1 patterns among populations. High similarity of vap1 patterns appeared between geographically close populations, and occasionally among distant populations. Analysis of spatially sampled populations within fields revealed an effect of tillage direction on the vap1 similarity for two of four studied fields. Overall, geographic distance and similarity of vap1 patterns of H. schachtii populations were negatively correlated. In conclusion, the population genetic structure was shaped by the interplay between the genetic adaptation and the passive transport of this nematode.


2010 ◽  
Vol 7 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Fabrice Sagnard ◽  
Sylvie Oddou-Muratorio ◽  
Christian Pichot ◽  
Giovanni G. Vendramin ◽  
Bruno Fady

PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0169165 ◽  
Author(s):  
Nadine Klauke ◽  
H. Martin Schaefer ◽  
Michael Bauer ◽  
Gernot Segelbacher

Sign in / Sign up

Export Citation Format

Share Document