scholarly journals Off‐target inhibition of NGLY1 by the poly‐caspase inhibitor Z‐VAD‐fmk induces cellular autophagy

FEBS Journal ◽  
2022 ◽  
Author(s):  
Sarah H Needs ◽  
Martin D Bootman ◽  
Jeff E Grotzke ◽  
Holger B Kramer ◽  
Sarah A Allman

2020 ◽  
Author(s):  
Sarah H Needs ◽  
Martin D Bootman ◽  
Jeff E Grotzke ◽  
Holger B Kramer ◽  
Sarah A Allman

SummaryPan-caspase inhibitor Z-VAD-fmk acts as an inhibitor of peptide:N-glycanase (NGLY1); an endoglycosidase which cleaves N-linked glycans from glycoproteins exported from the endoplasmic reticulum during ER-associated degradation (ERAD). Pharmacological N-glycanase inhibition by Z-VAD-fmk or siRNA knockdown (KD) induces GFP-LC3 positive puncta in HEK 293 cells. Activation of ER stress markers or reactive oxygen species (ROS) induction are not observed. In NGLY1 inhibition or KD, upregulation of autophagosome formation without impairment of autophagic flux are observed. Enrichment and proteomics analysis of autophagosomes after Z-VAD-fmk treatment or NGLY1 KD reveals comparable autophagosomal protein content. Upregulation of autophagy represents a cellular adaptation to NGLY1 inhibition or KD, and ATG13-deficient mouse embryonic fibroblasts (MEFs) show reduced viability under these conditions. In contrast, treatment with pan-caspase inhibitor, Q-VD-OPh does not induce cellular autophagy. Therefore, experiments with Z-VAD-fmk are complicated by the effects of NGLY1 inhibition and Q-VD-OPh represents an alternative caspase inhibitor free from this limitation.



2021 ◽  
Vol 22 (3) ◽  
pp. 1407
Author(s):  
Hongxia Liu ◽  
Wang Zheng ◽  
Qianping Chen ◽  
Yuchuan Zhou ◽  
Yan Pan ◽  
...  

Nasopharyngeal carcinoma (NPC) is one of the most frequent head and neck malignant tumors and is majorly treated by radiotherapy. However, radiation resistance remains a serious obstacle to the successful treatment of NPC. The aim of this study was to discover the underlying mechanism of radioresistance and to elucidate novel genes that may play important roles in the regulation of NPC radiosensitivity. By using RNA-seq analysis of NPC cell line CNE2 and its radioresistant cell line CNE2R, lncRNA CASC19 was screened out as a candidate radioresistance marker. Both in vitro and in vivo data demonstrated that a high expression level of CASC19 was positively correlated with the radioresistance of NPC, and the radiosensitivity of NPC cells was considerably enhanced by knockdown of CASC19. The incidence of autophagy was enhanced in CNE2R in comparison with CNE2 and another NPC cell line HONE1, and silencing autophagy with LC3 siRNA (siLC3) sensitized NPC cells to irradiation. Furthermore, CASC19 siRNA (siCASC19) suppressed cellular autophagy by inhibiting the AMPK/mTOR pathway and promoted apoptosis through the PARP1 pathway. Our results revealed for the first time that lncRNA CASC19 contributed to the radioresistance of NPC by regulating autophagy. In significance, CASC19 might be a potential molecular biomarker and a new therapeutic target in NPC.



2000 ◽  
Vol 278 (5) ◽  
pp. C982-C988 ◽  
Author(s):  
Roni Levy ◽  
Steven D. Smith ◽  
Kala Chandler ◽  
Yoel Sadovsky ◽  
D. Michael Nelson

Preeclampsia and fetal growth restriction are associated with placental hypoperfusion and villous hypoxia. The villous response to this environment includes diminished trophoblast differentiation and enhanced apoptosis. We tested the hypothesis that hypoxia induces apoptosis in cultured trophoblasts, and that epidermal growth factor (EGF), an enhancer of trophoblast differentiation, diminishes hypoxia-induced apoptosis. Trophoblasts isolated from placentas of term-uncomplicated human pregnancies were cultured up to 72 h in standard ([Formula: see text]= 120 mmHg) or hypoxic ([Formula: see text] < 15 mmHg) conditions. Exposure to hypoxia for 24 h markedly enhanced trophoblast apoptosis as determined by DNA laddering, internucleosomal in situ DNA fragmentation, and histomorphology, as well as by the reversibility of the apoptotic process with a caspase inhibitor. Apoptosis was accompanied by increased expression of p53 and Bax and decreased expression of Bcl-2. Addition of EGF to cultured trophoblasts or exposure of more differentiated trophoblasts to hypoxia significantly lowered the level of apoptosis. We conclude that hypoxia enhances apoptosis in cultured trophoblasts by a mechanism that involves an increase in p53 and Bax expression. EGF and enhancement of cell differentiation protect against hypoxic-induced apoptosis.



Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2177
Author(s):  
Antonia Di Mola ◽  
Consiglia Tedesco ◽  
Antonio Massa

Herein we describe a very useful application of the readily available trifunctional aromatic ketone methyl-2-(2-bromoacetyl)benzoate in reactions with primary amines. An unexpected in situ air oxidation that follows a cascade process allowed the access to a series of isoquinoline-1,3,4(2H)-triones, a class of heterocyclic compounds of great interest containing an oxygen-rich heterocyclic scaffold. A modification of the original protocol, utilizing a Staudinger reaction in the presence of trimethylphosphine, was necessary for the synthesis of Caspase inhibitor trione with free NH group.



2015 ◽  
Vol 26 (2) ◽  
pp. S21
Author(s):  
Shing-Hwa Lu ◽  
Hsin-Chen Lee ◽  
Alex T.L. Lin ◽  
Kuang-Kuo Chen ◽  
Luke S. Chang


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hongshan Ge ◽  
Fan Zhang ◽  
Dan Shan ◽  
Hua Chen ◽  
Xiaona Wang ◽  
...  

UCP2 plays a physiological role by regulating mitochondrial biogenesis, maintaining energy balance, ROS elimination, and regulating cellular autophagy in numerous tissues. But the exact roles of UCP2 in cumulus cells are still not clear. Genipin, a special UCP2 inhibitor, was added into the cultural medium to explore the roles of UCP2 in human cumulus cells. There were no significant differences in ATP and mitochondrial membrane potential levels in cumulus cells from UCP2 inhibiting groups as compared with the control. The levels of ROS and Mn-SOD were markedly elevated after UCP2 inhibited Genipin. However, the ratio of reduced GSH to GSSG significantly declined after treatment with Genipin. UCP2 inhibition by Genipin also resulted in obvious increase in the active caspase-3, which accompanied the decline of caspase-3 mRNA. The level of progesterone in culture medium declined obviously after Genipin treatment. But there was no significant difference in estradiol concentrations. This study indicated that UCP2 is expressed in human cumulus cells and plays important roles on mediate ROS production, apoptotic process, and steroidogenesis, suggesting UCP2 may be involved in regulation of follicle development and oocyte maturation and quality.



1998 ◽  
Vol 18 (11) ◽  
pp. 6387-6398 ◽  
Author(s):  
Catherina H. Bird ◽  
Vivien R. Sutton ◽  
Jiuru Sun ◽  
Claire E. Hirst ◽  
Andrea Novak ◽  
...  

ABSTRACT Cytotoxic lymphocytes (CLs) induce caspase activation and apoptosis of target cells either through Fas activation or through release of granule cytotoxins, particularly granzyme B. CLs themselves resist granule-mediated apoptosis but are eventually cleared via Fas-mediated apoptosis. Here we show that the CL cytoplasmic serpin proteinase inhibitor 9 (PI-9) can protect transfected cells against apoptosis induced by either purified granzyme B and perforin or intact CLs. A PI-9 P1 mutant (Glu to Asp) is a 100-fold-less-efficient granzyme B inhibitor that no longer protects against granzyme B-mediated apoptosis. PI-9 is highly specific for granzyme B because it does not inhibit eight of the nine caspases tested or protect transfected cells against Fas-mediated apoptosis. In contrast, the P1(Asp) mutant is an effective caspase inhibitor that protects against Fas-mediated apoptosis. We propose that PI-9 shields CLs specifically against misdirected granzyme B to prevent autolysis or fratricide, but it does not interfere with homeostatic deletion via Fas-mediated apoptosis.



2006 ◽  
Vol 203 (7) ◽  
pp. 1637-1642 ◽  
Author(s):  
Shixin Qin ◽  
Haichao Wang ◽  
Renqi Yuan ◽  
Hui Li ◽  
Mahendar Ochani ◽  
...  

Severe sepsis, a lethal syndrome after infection or injury, is the third leading cause of mortality in the United States. The pathogenesis of severe sepsis is characterized by organ damage and accumulation of apoptotic lymphocytes in the spleen, thymus, and other organs. To examine the potential causal relationships of apoptosis to organ damage, we administered Z-VAD-FMK, a broad-spectrum caspase inhibitor, to mice with sepsis. We found that Z-VAD-FMK–treated septic mice had decreased levels of high mobility group box 1 (HMGB1), a critical cytokine mediator of organ damage in severe sepsis, and suppressed apoptosis in the spleen and thymus. In vitro, apoptotic cells activate macrophages to release HMGB1. Monoclonal antibodies against HMGB1 conferred protection against organ damage but did not prevent the accumulation of apoptotic cells in the spleen. Thus, our data indicate that HMGB1 production is downstream of apoptosis on the final common pathway to organ damage in severe sepsis.



Renal Failure ◽  
2014 ◽  
Vol 37 (1) ◽  
pp. 144-150 ◽  
Author(s):  
Dong Won Lee ◽  
Sarah Faubel ◽  
Charles L. Edelstein


Autoimmunity ◽  
2009 ◽  
Vol 42 (4) ◽  
pp. 328-330
Author(s):  
Petra Heyder ◽  
Isabelle Bekeredjian-Ding ◽  
Stefan Krienke ◽  
Hanns-Martin Lorenz ◽  
Martin Schiller


Sign in / Sign up

Export Citation Format

Share Document