Residence time, expansion toward the equator in the invaded range and native range size matter to climatic niche shifts in non-native species

2014 ◽  
Vol 23 (10) ◽  
pp. 1094-1104 ◽  
Author(s):  
Yiming Li ◽  
Xuan Liu ◽  
Xianping Li ◽  
Blaise Petitpierre ◽  
Antoine Guisan
2013 ◽  
Vol 280 (1767) ◽  
pp. 20131446 ◽  
Author(s):  
Jake M. Alexander

A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment and climatic niche modelling. This approach reveals that non-native Lactuca serriola originates primarily from Europe, a climatic subset of its native range, with low rates of admixture from Asia. It has rapidly refilled its climatic niche in the new range, associated with the evolution of flowering phenology to produce clines along climate gradients that mirror those across the native range. Consequently, some non-native plants have evolved development times and grow under climates more extreme than those found in Europe, but not among populations from the native range as a whole. This suggests that many plant populations can adapt rapidly to changed climatic conditions that are already within the climatic niche space occupied by the species elsewhere in its range, but that evolution to conditions outside of this range is more difficult. These findings can also help to explain the prevalence of niche conservatism among non-native species.


2021 ◽  
Vol 154 (2) ◽  
pp. 173-182
Author(s):  
Pedro P. Garcillán ◽  
Carlos Martorell

Background and aims − Humans are increasingly introducing species to new regions. It is necessary to understand the processes that drive the expansion of non-native species into these new habitats across multiple spatiotemporal scales.Material and methods − We studied the spatial distribution of the non-native flora (39 species) of Guadalupe Island (246 km2) in the Mexican Pacific. We analyzed how residence time (time since first report in historical sources, 1875–2004) and species attributes (population density, flowering phenology, and individual height) are related with range sizes of non-native plants. To test whether the residence time – range size relationship of non-native plants can result from other factors besides time since their arrival, we compared it to the residence time – range size relationship of native plants. Range sizes were obtained using herbarium data and a systematic field sampling of 110 transects (50 × 2 m) throughout the entire island. We used beta regression to analyze the relationship of range sizes with residence time and species attributes.Key results − Range sizes of non-natives showed a positive relationship with residence time, flower phenology, and notably with plant density, but not with individual height. However, similar relationships were found for native species, casting doubts on whether our results reflect the range expansion rates of non-native species. Conclusions − Our results suggest that the production of large numbers of propagules, both as a result of long reproductive periods and large population sizes, determines to a large extent the rates of range size expansion of non-native species. However, the relationship we found between time since discovery and range size may arise from sampling biases, biological processes, or – most likely – both. This highlights the need for new approaches that allow us to discern the relative contributions of bias and process in our study of non-native species expansion.


2021 ◽  
Author(s):  
Thomas Carlin ◽  
Jennifer Bufford ◽  
Philip Hulme ◽  
William Godsoe

Abstract Climatic niche shifts occur when species occupy different climates in the introduced range than in their native range. We know that climatic niche shifts are common occurrences, however we do not currently understand whether climatic niche shifts can consistently be predicted across the globe. Using three congeneric weed species, we investigate whether the known presence of a climatic niche shift in one range can help predict a species’ distribution in other ranges. We consider whether data either from other ranges or from closely related species can help predict whether climatic niche shifts will occur. We compared the climatic conditions occupied by Rumex obtusifolius, R. crispus, and R. conglomeratus between their native range (Eurasia) and three different introduced ranges (North America, Australia, New Zealand). We consider metrics of niche overlap, expansion, unfilling, pioneering, and similarity to determine whether i) climatic niche shifts have occurred and ii) climatic niche shifts were consistent across ranges and congeners. We found that the presence and direction of climatic niche shifts is inconsistent across ranges for all three species. Within an introduced range, however, niche shifts were similar between species. Despite this, species distributions outside of their native range could not be reliably predicted by the distributions of congeners in either their native or introduced ranges. This study is the first of its kind to consider niche shifts across multiple introduced ranges and species, highlighting new challenges in predicting species distributions when species undergo climatic niche shifts.


2017 ◽  
Vol 7 (23) ◽  
pp. 10289-10300 ◽  
Author(s):  
John P. Schmidt ◽  
John M. Drake ◽  
Patrick Stephens

2021 ◽  
Vol 31 (19) ◽  
pp. R1252-R1266
Author(s):  
Olivia K. Bates ◽  
Cleo Bertelsmeier

2021 ◽  
Author(s):  
Inês Cerveira ◽  
Vânia Baptista ◽  
Maria Alexandra Teodósio ◽  
Pedro Morais

Abstract Promoting the consumption of edible aquatic invasive species has gained popularity to minimize its impacts while easing pressure on native resources. Weakfish Cynoscion regalis (Bloch & Schneider, 1801) is one of the most recent invasive fish species in the Iberian Peninsula (Europe) which once sustained an important fishery in the native range (Northwest Atlantic Ocean). Portugal ranks third in the list of the world’s top fish consumers, so promoting a weakfish fishery could at least help minimize the impacts upon native species, since weakfish have innate traits that are likely appreciated by Portuguese fish consumers. However, introducing a new species to consumers is challenging owing to consumers’ habits and unfamiliarity with the species. So, we aimed to (i) evaluate the acceptance of weakfish by a panel of Portuguese fish consumers and (ii) create outreach actions – partnerships with local Chefs and press releases – to explain to a broader public what invasive species are and promote the consumption of edible aquatic invasive species. The survey that we conducted to Portuguese fish consumers showed that weakfish has great chances of being well accepted by the public – 90% of consumers would buy weakfish because they appreciated its appearance, flavour, and texture, besides being a wild fish. The outreach actions reached a few million people because 46 online articles were published, and three news pieces broadcasted on national television. Overall, our strategy greatly increased the public’s awareness about invasive species, which can be replicated elsewhere in the world.


2021 ◽  
Author(s):  
Sonja Stutz ◽  
Hariet Hinz ◽  
Chris Parker

Abstract L. latifolium is an erect, branching perennial native to southern Europe and western Asia. It was accidentally introduced into countries outside of its native range as a contaminant of seeds such as Beta vulgaris. L. latifolium exhibits a wide ecological adaptation to different environmental factors, tolerating a range of soil moisture and salinity conditions, which has allowed it to spread explosively in recent years in wetlands and riparian areas especially in the western USA. L. latifolium thrives in many lowland ecosystems and is extremely competitive, forming monospecific stands that can crowd out desirable native species and a number of threatened and endangered species. L. latifolium alters the ecosystem in which it grows, acting as a 'salt pump' which takes salt ions from deep in the soil profile and deposits them near the surface, thereby shifting plant composition and altering diversity.


Author(s):  
James A. Strong ◽  
Christine A. Maggs ◽  
Mark P. Johnson

The overall biotic pressure on a newly introduced species may be less than that experienced within its native range, facilitating invasion. The brown algaSargassum muticum(Yendo) Fensholt is a conspicuous and successful invasive species originally from Japan and China. We comparedS. muticumand native macroalgae with respect to the biotic pressures of mesoherbivore grazing and ectocarpoid fouling. In Strangford Lough, Northern Ireland,S. muticumthalli were as heavily overgrown with seasonal blooms of epiphytic algae as native macroalgal species were. The herbivorous amphipodDexamine spinosawas much more abundant onS. muticumthan on any native macroalga. When cultured with this amphipod,S. muticumlost more tissue than three native macroalgae,Saccharina latissima(Linnaeus) Laneet al.,Halidrys siliquosa(Linnaeus) Lyngbye andFucus serratusLinnaeus.Sargassum muticumcultured with both ectocarpoid fouling and amphipods showed a severe impact, consistent with our previous findings of large declines in the density ofS. muticumobserved in the field during the peak of fouling. Despite being a recent introduction into the macroalgal community in Strangford Lough,S. muticumappears to be under biotic pressure at least equal to that on native species, suggesting that release from grazing and epiphytism does not contribute to the invasiveness of this species in Strangford Lough.


2019 ◽  
Vol 13 (1) ◽  
pp. 70-77 ◽  
Author(s):  
Jialiang Zhang ◽  
Evan Siemann ◽  
Baoliang Tian ◽  
Wei Huang ◽  
Jianqing Ding

Abstract Aims Seeds of many invasive plants germinate more quickly than those of native species, likely facilitating invasion success. Assessing the germination traits and seed properties simultaneously for introduced and native populations of an invasive plant is essential to understanding biological invasions. Here, we used Triadica sebifera as a study organism to examine intraspecific differences in seed germination together with seed characteristics. Methods We measured physical (volume, mass, coat hardness and coat thickness of seeds) and chemical (crude fat, soluble protein, sugar, gibberellins [GA] and abscisic acid [ABA] of kernels) properties of T. sebifera seeds collected in 2017 from 12 introduced (United States) populations and 12 native (China) populations and tested their germination rates and timing in a greenhouse experiment in China. Furthermore, we conducted an extra experiment in the United States using seeds collected in 2016 and 2017 to compare the effects of study sites (China vs. United States) and seed collection time (2016 vs. 2017) on seed germination. Important Findings Seeds from the introduced range germinated faster than those from the native range. Physical and chemical measurements showed that seeds from the introduced range were larger, had higher GA concentrations and GA:ABA ratio, but lower crude fat concentrations compared to those from the native range. There were no significant differences in seed mass, coat hardness and coat thickness or kernel ABA, soluble protein or sugar concentrations between seeds from introduced vs. native ranges. Germination rates were correlated between United States and China greenhouses but germination rates for populations varied between collection years. Our results suggest that larger seeds and higher GA likely contribute to faster germination, potentially facilitating T. sebifera invasion in the introduced range.


Sign in / Sign up

Export Citation Format

Share Document