Biochar and nitrogen application rates alter some forage and soil minerals concentrations and soil leachate quality in a semiarid mixed grassland system

2021 ◽  
Author(s):  
Everald Mclennon ◽  
Juan K.Q. Solomon ◽  
Jason Davison
2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 31-31
Author(s):  
Kevin R Meng ◽  
Eric Bailey ◽  
Josh Zeltwanger ◽  
Hannah Allen ◽  
Mikaela Adams ◽  
...  

Abstract Chemical seed-head suppression of endophyte infected tall fescue (Lolium arundinaceum) improves stocker cattle performance but may decrease forage yield. Spring nitrogen application increases tall fescue growth with a concomitant increase in ergot alkaloids, produced by the symbiotic endophyte Epichloë coenophiala. We hypothesized that greater amounts of nitrogen applied to tall fescue would increase forage yield and offset losses in forage production from chemical suppression of seed-heads with metsulfuron without effect on alkaloid concentration. Ninety-six steers (270 ± 20 kg) were randomly assigned to one of sixteen paddocks (1.8 ha) on April 18 and continuously grazed for 57 d. Paddocks were blocked by previous use (n = 4) and randomly assigned to one of four treatments; no metsulfuron, no nitrogen (NEGCON), metsulfuron with 0 (MET0), 67 (MET67), or 134 (MET134) kg/ha of ammonium nitrate, applied March 11. Steers grazing MET0 paddocks were removed 17 d early due to insufficient forage availability. Steer weight, forage yield, forage nutritive value and ergot alkaloids in forage samples were measured monthly. Seed-head frequency and species composition were determined in June. Metsulfuron application reduced (P < 0.01) tall fescue seed-heads by 80%. Metsulfuron decreased (P = 0.03) ergovaline but ergovaline increased (P < 0.01) at each monthly sampling across treatments. Nitrogen had no impact on ergovaline concentration (P = 0.50). Forage yield tended to be least (P = 0.07) for MET0, intermediate for NEGCON and MET67, and tended to be greatest for MET134 (P = 0.08). Steer ADG was not affected by treatment (P < 0.80). Metsulfuron decreased NDF (P=0.02) regardless of fertilization rate. Forage CP increased with fertilization (P < 0.01) and no differences were detected between NEGCON and MET0 (P = 0.45). Species composition was not impacted (P >0.07) by treatment. Metsulfuron decreased seed-head growth and ergovaline concentration in tall fescue. Additional nitrogen fertilizer ameliorated forage yield lost to metsulfuron application but did not impact steer gain.


2001 ◽  
Vol 1 ◽  
pp. 81-89 ◽  
Author(s):  
Chwen-Ming Yang

Ground-based remotely sensed reflectance spectra of hyperspectral resolution were monitored during the growing period of rice under various nitrogen application rates. It was found that reflectance spectrum of rice canopy changed in both wavelength and reflectance as the plants developed. Fifteen characteristic wavebands were identified from the apparent peaks and valleys of spectral reflectance curves, in accordance with the results of the first-order differentiation, measured over the growing season of rice. The bandwidths and center wavelengths of these characteristic wavebands were different among nitrogen treatments. The simplified features by connecting these 15 characteristic wavelengths may be considered as spectral signatures of rice canopy, but spectral signatures varied with developmental age and nitrogen application rates. Among these characteristic wavebands, the changes of the wavelength in band 11 showed a positive linear relationship with application rates of nitrogen fertilizer, while it was a negative linear relationship in band 5. Mean reflectance of wavelengths in bands 1, 2, 3, 5, 11, and 15 was significantly correlated with application rates. Reflectance of these six wavelengths changed nonlinearly after transplanting and could be used in combination to distinguish rice plants subjected to different nitrogen application rates. From the correlation analyses, there are a variety of correlation coefficients for spectral reflectance to leaf nitrogen content in the range of 350-2400 nm. Reflectance of most wavelengths exhibited an inverse correlation with leaf nitrogen content, with the largest negative value (r = �0.581) located at about 1376 nm. Changes in reflectance at 1376 nm to leaf nitrogen content during the growing period were closely related and were best fitted to a nonlinear function. This relationship may be used to estimate and to monitor nitrogen content of rice leaves during rice growth. Reflectance of red light minimum and near-infrared peak and leaf nitrogen content were correlated nonlinearly.


1994 ◽  
Vol 74 (3) ◽  
pp. 607-610 ◽  
Author(s):  
Peter M. A. Toivonen ◽  
B. J. Zebarth ◽  
P. A. Bowen

Broccoli quality in British Columbia can vary with season and with the farm site on which it is grown. One major management difference between farms is nitrogen fertilization rate. This work was conducted to determine the effect of nitrogen fertilization (0, 125, 250, 375, 500 and 625 kg N ha−1) and growing season (three plantings in 2 consecutive years) on vitamin C content, head size and storability of broccoli (Brassica oleracea var. Italica, 'Emperor'). The climatic conditions during crop growth and development had a greater overall effect on vitamin C content, head diameter and head weight than nitrogen fertilization. Weight and vitamin C losses during storage in the first year were not affected by nitrogen fertilization rates. Moderate nitrogen application rates of 125 and 250 kg N ha−1 in all three plantings produced a head size considered optimal for marketing. Key words: Postharvest, vegetable quality, climatic conditions


Author(s):  
Jeremy Sofonia ◽  
Yuri Shendryk ◽  
Stuart Phinn ◽  
Chris Roelfsema ◽  
Farid Kendoul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document