scholarly journals P25: THE COMBINED UTILITY OF EX VIVO IFN-γ RELEASE ENZYME LINKED IMMUNOSPOT AND IN VIVO SKIN TESTING IN PATIENTS WITH ANTIBIOTIC ASSOCIATED SEVERE CUTANEOUS ADVERSE DRUG REACTIONS

2017 ◽  
Vol 47 ◽  
pp. 12-12
Author(s):  
JA Trubiano ◽  
K Strautins ◽  
AJ Redwood ◽  
R Pavos ◽  
KC Konvinse ◽  
...  
1998 ◽  
Vol 5 (4) ◽  
pp. 531-536 ◽  
Author(s):  
Nuket Desem ◽  
Stephen L. Jones

ABSTRACT A sensitive two-step simultaneous enzyme immunoassay (EIA) for human gamma interferon (IFN-γ) has been developed and used as an in vitro test for human tuberculosis (TB) in comparison with tuberculin skin testing. The EIA was shown to be highly sensitive, detecting less than 0.5 IU of recombinant human IFN-γ per ml within a linear detection range of 0.5 to 150 IU/ml. The assay was highly reproducible and specific for native IFN-γ. In addition, the assay detected chimpanzee, orangutan, gibbon, and squirrel monkey IFN-γs. Cross-reactions with other human cytokines or with IFN-γs derived from mice, cattle, or Old World monkeys were not evident. The assay was used to detect TB infection by incubating whole blood overnight with human, avian, and bovine tuberculin purified protein derivatives (PPDs), as well as positive (mitogen)- and negative-control preparations. The levels of IFN-γ in plasma supernatants were then determined. Blood from 10 tuberculin skin test-positive individuals responded predominantly to the human tuberculin PPD antigen and to a lesser extent to bovine and avian PPD antigens. By contrast, blood from 10 skin test-negative individuals showed minimal responses or no response to any of the tuberculin PPDs. Detectable levels of IFN-γ were present in all blood samples stimulated with mitogen. In vivo tuberculin reactivity was correlated with IFN-γ responsiveness in vitro. These results support the further study of the blood culture–IFN-γ EIA system as an alternative to skin testing for the detection of human TB infection.


Author(s):  
Md. Jahidul Hasan

Polymyxins are the last line potential antibiotics against multi-drug resistant gram-negative bacteria and consist of two sister antibiotics: Polymyxin B and colistin (polymyxin E). Intravenous use of polymyxins was started from a long ago in the treatment of serious gram-negative infections and once their uses were restricted due to potential adverse drug reactions, such as nephrotoxicity and neurotoxicity. Lack of in vivo clinical studies on polymyxins mostly, in human body makes the pharmacokinetics and pharmacodynamics of polymyxin B and colistin unclear in many aspects, such as the distribution of polymyxins in different compartments of lung. The nebulization of polymyxins is practicing very limitedly and lack of clinical evidence has not justified this administration technique yet properly to date. The main objective of this review study was to evaluate the pharmacokinetic and pharmacodynamic properties of intravenous and nebulized polymyxins and the related therapeutic potentialities. Aerosolized polymyxins directly administered to the respiratory tract was found with higher drug concentration in different subcompartments of lungs than the intravenous administration and sustainably meets the minimum inhibitory concentration locally with superior bactericidal properties in respiratory tract infections. In contrast, intravenous administration of polymyxins shows similar anti-infective superiority in other organs, such as blood, urinary tract etc. So, during this alarming situation of rapidly emerging multidrug-resistant organisms in human communities, therapeutic administration techniques of last resort polymyxins should be clinically evidence-based for achieving optimum therapeutic outcomes with minimum chance of adverse drug reactions.  


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Olga Danov ◽  
Lisa Lasswitz ◽  
Helena Obernolte ◽  
Christina Hesse ◽  
Armin Braun ◽  
...  

Abstract Background Antiviral drugs such as rupintrivir may have an immune-modulatory effect in experimentally induced allergic asthma with subsequent RV infection. We infected lung slices of house-dust mite (HDM)-sensitized asthmatic mice ex vivo with human rhinovirus (RV) and investigated the effect of the antiviral drug rupintrivir on RV-induced cytokine response in lung tissue of HDM-sensitized mice ex vivo. Methods Mice were sensitized with HDM. Precision-cut lung slices (PCLS) were prepared from HDM-sensitized or non-sensitized mice. Lung slices were infected ex vivo with RV or RV together with rupintrivir. Modulation of immune responses was evaluated by cytokine secretion 48 h post infection. Results In vivo HDM sensitization resulted in a TH-2/TH-17-dominated cytokine response that persisted in PCLS ex vivo. RV infection of PCLS from non-sensitized mice resulted in the induction of an antiviral and pro-inflammatory immune response, as indicated by the secretion of IFN-α, IFN-β, IFN-γ, TNF-α, MCP-1, IP-10, IL-10, and IL-17A. In contrast, PCLS from HDM-sensitized mice showed an attenuated antiviral response, but exaggerated IL-4, IL-6, and IL-10 secretion upon infection. Rupintrivir inhibited exaggerated pro-inflammatory cytokine IL-6 and TH-2 cytokine IL-4 in HDM-sensitized mice. Conclusions In summary, this study demonstrates that treatment with rupintrivir influences virus-induced IL-4 and IL-6 cytokine release under experimental conditions ex vivo.


2013 ◽  
Vol 68 (1) ◽  
pp. e18-e19
Author(s):  
Annie Otto-Bruc ◽  
Boryeu Mao ◽  
Jacques C. Migeon ◽  
Fabien Tillier ◽  
Benoît Fouchaq

2020 ◽  
Author(s):  
Ganapathy Sriram ◽  
Lauren Milling ◽  
Jung-Kuei Chen ◽  
Wuhbet Abraham ◽  
Erika D. Handly ◽  
...  

ABSTRACTInhibition of immune checkpoints has shown promising results in the treatment of certain tumor types. However, the majority of cancers do not respond to immune checkpoint inhibition (ICI) treatment, indicating the need to identify additional modalities that enhance the response to immune checkpoint blockade. In this study, we identified a tumor-tailored approach using ex-vivo DNA damaging chemotherapy-treated tumor cells as a live injured cell adjuvant. Using an optimized ex vivo system for dendritic cell-mediated T-cell IFN-γ induction in response to DNA-damaged tumor cells, we identified specific dose-dependent treatments with etoposide and mitoxantrone that markedly enhance IFN-γ production by T-cells. Unexpectedly, the immune-enhancing effects of DNA damage failed to correlate with known markers of immunogenic cell death or with the extent of apoptosis or necroptosis. Furthermore, dead tumor cells alone were not sufficient to promote DC cross-presentation and induce IFN-γ in T-cells. Instead, the enhanced immunogenicity resided in the fraction of injured cells that remained alive, and required signaling through the RIPK1, NF-kB and p38MAPK pathways. Direct in vivo translation of these findings was accomplished by intra-tumoral injection of ex vivo etoposide-treated tumor cells as an injured cell adjuvant, in combination with systemic anti-PD1/CTLA4 antibodies. This resulted in increased intra-tumoral CD103+ dendritic cells and circulating tumor antigen-specific CD8+ T-cells, leading to enhanced anti-tumor immune responses and improved survival. The effect was abrogated in BATF3-deficient mice indicating that BATF3+ DCs are required for appropriate T-cell stimulation by live but injured DNA-damaged tumor cells. Notably, injection of the free DNA-damaging drug directly into the tumor failed to elicit such an enhanced anti-tumor response as a consequence of simultaneous damage to dendritic cells and T-cells. Finally, the DNA damage induced injured cell adjuvant and systemic ICI combination, but not ICI alone, induced complete tumor regression in a subset of mice who were then able to reject tumor re-challenge, indicating induction of a long-lasting anti-tumor immunological memory by the injured cell adjuvant treatment in vivo.


Author(s):  
Ren ◽  
Wang ◽  
Xu ◽  
Li ◽  
Han

Most studies on adverse drug reactions (ADRs) of fluoroquinolones (FQs) have focused on the mechanisms of single ADRs, and no quantitative structure–activity relationship (QSAR) method studies have been carried out that combine several ADRs of FQs. In this study, an improved three-dimensional (3D) QSAR method was established using fuzzy comprehensive evaluation. This method could simultaneously consider three common ADRs of FQs using molecular parameters. The improved method could comprehensively predict three ADRs of FQs and provide direction for the development of new drugs with lower ADRs than the originals. According to the improved method, 48 derivatives with lower ADRs (decreased by 4.86% to 50.92%) were designed from pazufloxacin. Three derivatives with a higher genotoxicity, higher photodegradation, and lower bioconcentration than pazufloxacin were selected using the constructed QSAR methods of the FQs. Finally, three traditional 3D-QSAR methods of single ADR were constructed to validate the improved method. The improved method was reasonable, with a relative error range of 0.96% to 4.30%. This study provides valuable reference data and will be useful for the development of strategies to produce new drugs with few ADRs. In the absence of complementary biological studies of these adverse drug reactions, the results reported here may be quite divergent from those found in humans or experimental animals in vivo. One major reason for this is that many adverse drug reactions are dependent upon enzyme-catalyzed metabolic activation (toxication) or on non-enzymatic conversion to toxic products and are not due to the parent drug moiety.


2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 10-10
Author(s):  
Régine Audran ◽  
Haithem Chtioui ◽  
Anne-Christine Thierry ◽  
Carole Mayor ◽  
Laure Vallotton ◽  
...  

10 Background: Trastuzumab is a humanized monoclonal antibody targeting breast cancer cells overexpressing the HER2-oncoprotein. During a Phase-I single centre, single dose, randomized, double-blind, cross-over study assessing the bioequivalence of a proposed trastuzumab biosimilar (MYL-1401O) versus the initially marketed drug (Herceptin), we investigated in addition a large panel of pharmacodynamics parameters comparing the immunomodulatory activity of both drugs. Methods: 22 healthy males were included, 19 subjects receiving randomly a single intravenous infusion of MYL-1401O and 22 of Herceptin, separated by 16 to 22 week wash-out. Blood samples drawn pre- and post- infusion were assessed for in vivo serum cytokines induction (IL-1β, IL-2, IL-6, IL-10, IL-12, TNF-α, GM-CSF and IFN-γ) whereas the impact of treatment on mononuclear cell subsets and their level of activation was tested ex vivo. Volunteers’ PBMC (peripheral blood monocnuclear cells) were stimulated in vitro with recall antigens and mitogen for cytokine production. At baseline, we performed in addition a cytokine release assay on PBMC upon stimulation with trastuzumab as a preclinical safety test. Results: Trastuzumab infusion induced a transient and weak peak of serum IL-6 at 6h, and a modulation of mononuclear cell subset profile and level of activation. Notably CD16+ cells frequency decreased at 3h and peaked at 48h. Except for CD8+ T cells, there were no significant differences between Herceptin and its proposed biosimilar ex vivo. PBMC stimulated in vitro with trastuzumab secreted IL-6, TNF-a, IL-1β, GM-CSF, IFN-γ, and IL-10, but no IL-2. There was no significant difference between the two mAbs. Conclusions: Based on these in vivo, ex vivo and in vitro experiments, there is a strong assumption that MYL-1401O is biosimilar to the reference drug Herceptin for its immunomodulation properties as already proven for its bioequivalence. Clinical trial information: 2011-001406-94.


Sign in / Sign up

Export Citation Format

Share Document