scholarly journals Expression and function of toll-like receptors in multiple myeloma patients: toll-like receptor ligands promote multiple myeloma cell growth and survival via activation of nuclear factor-κB

2010 ◽  
Vol 150 (5) ◽  
pp. 543-553 ◽  
Author(s):  
Yang Xu ◽  
Yun Zhao ◽  
Haiwen Huang ◽  
Guanghua Chen ◽  
Xiaojin Wu ◽  
...  
Leukemia ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 2661-2669 ◽  
Author(s):  
H Ohguchi ◽  
T Harada ◽  
M Sagawa ◽  
S Kikuchi ◽  
Y-T Tai ◽  
...  

Blood ◽  
2002 ◽  
Vol 100 (13) ◽  
pp. 4615-4621 ◽  
Author(s):  
Nicola Giuliani ◽  
Simona Colla ◽  
Roberto Sala ◽  
Matteo Moroni ◽  
Mirca Lazzaretti ◽  
...  

The biologic mechanisms involved in the pathogenesis of multiple myeloma (MM) bone disease are not completely understood. Recent evidence suggests that T cells may regulate bone resorption through the cross-talk between the critical osteoclastogenetic factor, receptor activator of nuclear factor-κB ligand (RANKL), and interferon γ (IFN-γ) that strongly suppresses osteoclastogenesis. Using a coculture transwell system we found that human myeloma cell lines (HMCLs) increased the expression and secretion of RANKL in activated T lymphocytes and similarly purified MM cells stimulated RANKL production in autologous T lymphocytes. In addition, either anti–interleukin 6 (anti–IL-6) or anti–IL-7 antibody inhibited HMCL-induced RANKL overexpression. Consistently, we demonstrated that HMCLs and fresh MM cells express IL-7 mRNA and secrete IL-7 in the presence of IL-6 and that bone marrow (BM) IL-7 levels were significantly higher in patients with MM. Moreover, we found that the release of IFN-γ by T lymphocytes was reduced in presence of both HMCLs and purified MM cells. Furthermore, in a stromal cell–free system, osteoclastogenesis was stimulated by conditioned medium of T cells cocultured with HMCLs and inhibited by recombinant human osteoprotegerin (OPG; 100 ng/mL to 1 μg/mL). Finally, RANKL mRNA was up-regulated in BM T lymphocytes of MM patients with severe osteolytic lesions, suggesting that T cells could be involved at least in part in MM-induced osteolysis through the RANKL overexpression.


2007 ◽  
Vol 13 (20) ◽  
pp. 6010-6018 ◽  
Author(s):  
Mathilde Romagnoli ◽  
Grégoire Desplanques ◽  
Sophie Maïga ◽  
Steven Legouill ◽  
Michel Dreano ◽  
...  

2014 ◽  
Vol 33 (1) ◽  
pp. 448-456 ◽  
Author(s):  
QI ZHANG ◽  
WEIQUN YAN ◽  
YANG BAI ◽  
HAO XU ◽  
CHANGHAO FU ◽  
...  

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5390-5390
Author(s):  
Jing Liu ◽  
Hong-Juan Dai ◽  
Bian-Ying Ma ◽  
Jian-Hui Song ◽  
Hui-yong Chen ◽  
...  

Abstract Multiple myeloma (MM), also known as plasma cell myeloma, is characterized by accumulation of clonal plasma cells in the bone marrow and overproduction of monoclonal immunoglobulin (Ig) in the blood or urine. MM accounts for approximately 10% of all hematologic malignancies. Despite recent advances in the understanding and treatment of this disease, MM remains an incurable disease in the vast majority. With conventional chemotherapy, the 5-year median survival rate for MM patients is approximately 25%. Aptamers are single-stranded RNA or DNA sequences that bind to target molecules with high affinity and specificity. Compared with antibodies, aptamers have unique advantages including easy chemical synthesis and modification, low toxicity, lack of immunogenicity, and rapid tissue penetration, Based on these advantages, aptamers show great potential for therapeutic application. The aptamer TY04 is a single-stranded DNA (ssDNA) generated by a method named cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX), We found TY04 strongly inhibited the growth of multiple myeloma cell lines including MM1.S, NCI-H929, KM3 and OPM2,The concentration of TY04 to inhibit 50% cell growth (IC50) on MM1.S was 3.89 μM. In contrast, TY04 had no effect on the growth of non-tumor cell lines — immortal B lymphoblastoid cell lines. Next, we used MM1.S cell line as the model to study the mechanism of TY04 anti- multiple myeloma. Flow cytometry analysis showed that TY04 with the sequence specifically bind to MM1.S cells when compared with unselected ssDNA library control. To investigate whether the target molecules of TY04 are membrane proteins on cell surface, MM1.S cells were treated with trypsin and proteinase k for 2 or 10 minutes before incubation with TY04. The result revealed that TY04 lost partly recognition ability on treated cells, indicating that the target molecules were most likely membrane proteins. Furthermore, we evaluated the cell cycle distribution of MM1.S after TY04 treatment. We found that TY04 significantly caused cell-cycle arrest in G2/M phase. The percentage of G2/M phase cells increased from 30.1±1.56 to 53.2±6.36. To identify the underlying molecular mechanism, G2/M-related proteins were assayed by flow cytometry. Following TY04 treatment, a concomitant inhibition of ERK1/2, cyclin B, CDK1 and γ-tubulin expression occurred. Meanwhile, human cell cycle PCR array was used to analyze the expression of 84 genes key to cell cycle regulation in TY04-treated MM1.S cells. Our results indicated that aptamer TY04 decreased the genes expression of CCNB1, CCNB2, BIRC5, BRCA1 and CCNH, which were involved in the progress of G2/M phase. All these results are significant in that they provide a framework for further exploring the use of TY04 as a novel anti-multiple myeloma agent. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 12 (19) ◽  
pp. 5887-5894 ◽  
Author(s):  
Teru Hideshima ◽  
Paola Neri ◽  
Pierfranchesco Tassone ◽  
Hiroshi Yasui ◽  
Kenji Ishitsuka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document