Pecan Oil Recovery and Composition as Affected by Temperature, Pressure, and Supercritical CO2 Flow Rate

1997 ◽  
Vol 62 (4) ◽  
pp. 762-766 ◽  
Author(s):  
W.S. ALEXANDER ◽  
G.H. BRUSEWITZ ◽  
N.O. MANESS
Author(s):  
Hacer İçen ◽  
Hatice Tuğba Çelik ◽  
Mustafa Serhat Ekinci ◽  
Metin Gürü

Cardamom is plant of the Zingiberaceae family. It has been used for the treatment of many diseases such as migraine, bronchitis, stomach and intestinal disorders. Cardamom contains triterpenes, resins, starch and fatty compounds. Phytosterols (stigmasterol, campesterol and β-sitosterol) are a group steroid alcohol in plants. They are used food, medicine and cosmetic industry. They are protective effects against some types of cancer too. Phytosterols are found in the vegetable oil such as the spindle, corn and soybean oil. This paper deals with the maximum oil and β-sitosterol yield were investigated by means of the supercritical CO2 extraction of cardamom. The effect of operating parameters as temperature, pressure and CO2 flow rate were investigated on oil yield. The amount of β-sitosterol was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) at optimized conditions. The optimized conditions were recorded as temperature of 40oC, pressure of 200 bar and CO2 flow rate of 4 L/min. The maximum oil yield and amount of β-sitosterol were found as 74.83 mg oil/g seed and 4.73 mg β-sitosterol/g seed cardamom under these conditions.


Author(s):  
Xiao Qi ◽  
Ke Hanbing ◽  
Zhao Zhenxing ◽  
Li Yongquan ◽  
Liao Mengran

Supercritical CO2 (S-CO2) Brayton cycle has been identified as a promising power conversion method for the next generation of nuclear reactors due to its high efficiency and compactness. The heat exchanger is one of the most important components for S-CO2 Brayton cycle, and the printed circuit heat exchanger (PCHE) is supposed to be one of the promising candidates for the heat exchangers in S-CO2 Brayton cycle. It should be noted that the fluid maldistribution would induce heat transfer deterioration, especially for heat exchangers with micro- or mini-scale channels like PCHE. The thermal-physical properties of S-CO2 change violently during the heat transfer process, which makes the flow inside PCHE more complex. In this paper, the distribution of S-CO2 flow inside PCHE would be studied by 2-D CFD simulations. For the working fluids with constant properties, the flow nonuniformity increases with the mass flow rate. For the working fluid with S-CO2, the thermal-physical properties change significantly with temperature, and there exist a minimum value in the flow nonuniformity-mass flow rate curves (1.64 × 105 ≤ Rein ≤ 1.31 × 106). Insertion of baffles at manifolds could significantly improve the flow distribution uniformity and reduce the pressure drop. And it has been found that insertion of baffles at the collecting manifold has better performance compared with that at the distributing manifold or both.


2017 ◽  
Vol 68 (3) ◽  
pp. 205
Author(s):  
B. Anjaneyulu ◽  
S. Satyannarayana ◽  
Sanjit Kanjilal ◽  
V. Siddaiah ◽  
K. N. Prasanna Rani

In the present study, the supercritical carbon dioxide (CO2) extraction of oil from Simarouba gluaca seeds was carried out at varying conditions of pressure (300–500 bar), temperature (50–70 °C) and CO2 flow rate (10–30 g·min-1). The extraction condition for maximum oil yield was obtained at 500 bar pressure, 70 °C and at 30 g·min-1 flow rate of CO2. The extracted oil was analyzed thoroughly for physico-chemical properties and compared with those of conventional solvent extracted oil. An interesting observation is a significant reduction in the phosphorus content of the oil (8.4 mg·kg-1) extracted using supercritical CO2 compared to the phosphorous content of the solvent extracted oil (97 mg·kg-1). Moreover, the content of total tocopherols in supercritically extracted oil (135.6 mg·kg-1) was found to be higher than the solvent extracted oil (111 mg·kg-1). The rest of the physico-chemical properties of the two differently extracted oils matched well with each other. The results indicated the possible benefits of supercritical CO2 extraction over solvent extraction of Simarouba gluaca seed oil.


Author(s):  
Akshay Khadse ◽  
Lauren Blanchette ◽  
Jayanta Kapat ◽  
Subith Vasu ◽  
Kareem Ahmed

For the application of waste heat recovery (WHR), supercritical CO2 (S-CO2) Brayton power cycles offer significant suitable advantages such as compactness, low capital cost and applicable to a broad range of heat source temperatures. The current study is focused on thermodynamic modelling and optimization of Recuperated (RC) and Recuperated Recompression (RRC) S-CO2 Brayton cycles for exhaust heat recovery from a next generation heavy duty simple cycle gas turbine using a genetic algorithm. The Genetic Algorithm (GA) is mainly based on bio-inspired operators such as crossover, mutation and selection. This non-gradient based algorithm yields a simultaneous optimization of key S-CO2 Brayton cycle decision variables such as turbine inlet temperature, pinch point temperature difference, compressor pressure ratio. It also outputs optimized mass flow rate of CO2 for the fixed mass flow rate and temperature of the exhaust gas. The main goal of the optimization is to maximize power out of the exhaust stream which makes it single objective optimization. The optimization is based on thermodynamic analysis with suitable practical assumptions which can be varied according to the need of user. Further the optimal cycle design points are presented for both RC and RRC configurations and comparison of net power output is established for waste heat recovery.


2015 ◽  
Vol 733 ◽  
pp. 43-46
Author(s):  
Jiang Min Zhao ◽  
Tian Ge Li

In this paper, several aspects of the improvement of the oil recovery were analyzed theoretically based on the mechanism that equi-fluidity enhances the pressure gradient. These aspects include the increase of the flow rate and the recovery rate, of the swept volume, and of the oil displacement efficiency. Also, based on the actual situation, the author designed the oil displacement method with gathered energy equi-fluidity, realizing the expectation of enhancing oil recovery with multi-slug and equi-fluidity oil displacement method.


2018 ◽  
Vol 2 (1) ◽  
pp. 32
Author(s):  
Mia Ferian Helmy

Gas lift is one of the artificial lift method that has mechanism to decrease the flowing pressure gradient in the pipe or relieving the fluid column inside the tubing by injecting amount of gas into the annulus between casing and tubing. The volume of  injected gas was inversely proportional to decreasing of  flowing  pressure gradient, the more volume of gas injected the smaller the pressure gradient. Increasing flowrate is expected by decreasing pressure gradient, but it does not always obtained when the well is in optimum condition. The increasing of flow rate will not occured even though the volume of injected gas is abundant. Therefore, the precisely design of gas lift included amount of cycle, gas injection volume and oil recovery estimation is needed. At the begining well AB-1 using artificial lift method that was continuos gas lift with PI value assumption about 0.5 STB/D/psi. Along with decreasing of production flow rate dan availability of the gas injection in brownfield, so this well must be analyze to determined the appropriate production method under current well condition. There are two types of gas lift method, continuous and intermittent gas lift. Each type of gas lift has different optimal condition to increase the production rate. The optimum conditions of continuous gaslift are high productivity 0.5 STB/D/psi and minimum production rate 100 BFPD. Otherwise, the intermittent gas lift has limitations PI and production rate which is lower than continuous gas lift.The results of the analysis are Well AB-1 has production rate gain amount 20.75 BFPD from 23 BFPD became 43.75 BFPD with injected gas volume 200 MSCFPD and total cycle 13 cycle/day. This intermittent gas lift design affected gas injection volume efficiency amount 32%.


Sign in / Sign up

Export Citation Format

Share Document