Inhibition of Spontaneous and Mitogen-Induced Lymphocyte Proliferation by Murine Bone Marrow-Derived Macrophages: Role of Prostaglandins, Nitric Oxides and Cell-to-Cell Contact

1994 ◽  
Vol 40 (1) ◽  
pp. 10-15 ◽  
Author(s):  
G. ZWADLO-KLARWASSER ◽  
S. PLATEN ◽  
W. SCHMUTZLER
2005 ◽  
Vol 35 (1) ◽  
pp. 252-260 ◽  
Author(s):  
Pierre Quartier ◽  
Paul?K. Potter ◽  
Michael?R. Ehrenstein ◽  
Mark?J. Walport ◽  
Marina Botto

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2903-2903
Author(s):  
Kazuhisa Chonabayashi ◽  
Masakatsu Hishizawa ◽  
Shin Kawamata ◽  
Masashi Matsui ◽  
Tatsuharu Ohno ◽  
...  

Abstract Abstract 2903 Poster Board II-879 FMS-like tyrosine kinase 3 (FLT3), a class III receptor tyrosine kinase, is one of the most frequently mutated genes in hematological malignancies. The most common mutations of FLT3 are internal tandem duplications (ITDs) within the juxtamembrane domain: these mutations occur in 20% to 30% of patients with AML and are closely associated with a poor prognosis. In a small number of patients with myeloproliferative neoplasms (MPNs), FLT3 has been reported to fuse to ETV6 (TEL) and contribute to leukemogenesis, but the leukemogenic mechanism of ETV6/FLT3 remains unclear. We encountered a case of ETV6/FLT3 fusion in a patient with MPN complicated with T-cell lymphoblastic lymphoma. In this case, both myeloid and lymphoma cells shared the same chromosomal translocation, t(12;13)(p13;q12), and allogeneic hematopoietic stem cell transplantation led to complete remission for 3 years. Full-length ETV6/FLT3 fusion cDNA was cloned from the patient's bone marrow cells. Sequence analysis of the PCR product revealed that, in contrast to the finding of previously reported two cases of ETV6/FLT3-positive MPN, ETV6 exon 6 was fused to FLT3 exon 14 and that the fused portion of ETV6 contained 2 potential Grb2-binding sites (Vu et al., Leukemia 2006; Walz et al., Blood 2007a). The ETV6/FLT3 conferred IL-3-independent growth to Ba/F3 and 32Dcl3 cells. Using a dominant negative approach, we showed that both STAT5 and Ras played important roles in ETV6/FLT3-mediated transformation of the hematopoietic cell lines. To investigate the role of the ETV6/FLT3 fusion protein in vivo, we used a murine bone marrow transplant model. Retroviral transduction of the ETV6/FLT3 into primary murine bone marrow cells resulted in a CML-like myeloproliferative disease (MPD) with complete penetrance in the transplanted mice. The disease progressed to cause death at a median of 18 days after transplantation (n = 16). The transplanted mice developed severe leukocytosis (159 × 103 /μl to 417 × 103 /μl), splenomegaly, and extensive infiltration of myeloid cells in the bone marrow, spleen, liver, and peripheral blood. ETV6/FLT3-induced MPD was oligoclonal and only 2 of the 9 secondary transplant recipients developed similar MPD when 5 × 106 spleen cells from 3 independent diseased mice were used as donors. We assayed the mutant forms of the ETV6/FLT3 to test their ability to transform hematopoietic cells. Induction of MPD required the oligomerization domain of ETV6 and the tyrosine kinase activity of FLT3. Mice that received the double tyrosine-to-phenylalanine mutant of ETV6/FLT3 at sites 589 and 591 (Y589/591F) in the juxtamembrane domain of FLT3, which are critical for FLT3-ITD-induced MPD, also developed a similar MPD phenotype. Unlike FLT3-ITDs, Y589/591F mutation did not abrogate STAT5 activation in Ba/F3 and 32Dcl3 cells transformed by ETV6/FLT3. A recent study has shown that direct binding of Grb2 to tyrosine 768, 955, and 969 of FLT3 is important for FLT3-ITD-mediated proliferation and survival of hematopoietic cells. Tyrosine 314 in exon 5 of ETV6 has also been reported as the principal Grb2-binding site that contributes to leukemogenesis via oncogenic ETV6 fusion proteins such as ETV6/ABL. Thus, we next investigated the role of Grb2 binding in ETV6/FLT3-mediated leukemogenesis. Using coimmunoprecipitation assays, we demonstrated that Grb2 also binds to the tyrosine 314 and 354 of ETV6 of the ETV6/FLT3, in addition to the tyrosine 768, 955, and 969 of FLT3. Both ETV6/FLT3-Y314/354F and ETV6/FLT3-Y768/955/969F retained their interaction with Grb2 and induced rapidly fatal MPD when they were transduced into primary murine bone marrow cells. On the other hand, the ETV6/FLT3 mutant at all the binding sites of Grb2 (Y314/354/768/955/969F) significantly attenuated MPD development in mice. Simultaneous mutation of these 5 tyrosine residues completely abolished the binding of Grb2 and resulted in a marked decrease in the binding and phosphorylation of Gab2 and impaired activation of STAT5 and Akt in Ba/F3 cells. These results indicate that tyrosine 589 and 591 of FLT3 are dispensable for the ETV6/FLT3-induced MPD phenotype, and suggest that both ETV6 and FLT3 portions contribute to the ETV6/FLT3-mediated leukemogenesis by binding directly to Grb2. Our observations provide deep insights into the oncogenic signaling induced by active FLT3 mutants as well as provide a potential target for therapies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4194-4194
Author(s):  
Tobias Berg ◽  
Michael Heuser ◽  
Florian Kuchenbauer ◽  
Gyeongsin Park ◽  
Stephen Fung ◽  
...  

Abstract Abstract 4194 Cytogenetically normal acute myeloid leukemia (CN-AML) patients with high BAALC or MN1 expression have a poor prognosis. Whereas the oncogenic function of MN1 is well established, the functional role of BAALC in hematopoiesis is not known. We therefore compared the expression of BAALC and MN1 in 140 CN-AML patients by quantitative PCR. To further assess the impact of BAALC on leukemogenesis we used retroviral gene transfer into primary murine bone marrow cells and cells immortalized with NUP98-HOXD13 (ND13) and HOXA9. Transduced cells were assessed in vitro by colony forming assays and for their sensitivity to treatment with all-trans retinoic acid (ATRA). They were also evaluated by in vivo transplantation into lethally-irradiated mice. In the 140 CN-AML patients analyzed, the expression of BAALC and MN1 was highly correlated (R=0.71). Retroviral overexpression of MN1 or BAALC in the Hox gene-immortalized bone marrow cells did not cause upregulation of the other gene, suggesting that these genes do not regulate each other. In murine bone marrow cells BAALC did not immortalize the cells in vitro as assessed by serial replating of transduced cells in methylcellulose assays. Transplantation of transduced cells resulted in negligible engraftment of approximately 1 percent at 4 weeks after transplantation. However, co-transduction of BAALC into NUP98-HOXD13 cells (which are very sensitive to the treatment with all-trans retinoic acid) increased the 50 percent inhibitory concentration (IC50) of ATRA by 4.3-fold, suggesting a negative impact of BAALC on myeloid differentiation. We next evaluated whether the differentiation inhibiting effects of BAALC may cooperate with the self renewal-promoting effects of HOXA9 to induce leukemia in mice. Mice receiving transplants of murine bone marrow cells transduced with BAALC and HOXA9 developed myeloid leukemias with a median latency of 139.5 days that were characterized by leukocytosis, massively enlarged spleens (up to 1.02 g), anemia and thrombocytopenia. Infiltrations of myeloid cells were also found in liver, spleen, and kidney. The disease was transplantable into secondary animals. By Southern blot analysis we found one to two BAALC viral integrations per mouse, suggesting that clonal disease had developed from BAALC-transduced cells. We demonstrate for the first time that BAALC blocks myeloid differentiation and promotes leukemogenesis when combined with the self-renewal promoting oncogene HOXA9. Due to its prognostic and functional effects BAALC may become a valuable therapeutic target in leukemia patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1399-1399
Author(s):  
Wolfgang Wagner ◽  
Frederik Wein ◽  
Christoph Roderburg ◽  
Vladimir Benes ◽  
Anke Diehlmann ◽  
...  

Abstract Objective: The significant role of direct contact between hematopoietic progenitor cells (HPC) and the cellular microenvironment for maintaining “stemness” has been demonstrated. Human mesenchymal stromal cell (MSC) feeder layers represent a surrogate model for this interaction. The molecular composition of this heterotypic cell-cell contact is yet unknown. Methods: To define this cell-cell contact between HPC and MSC, we have studied adhesion of various fractions of HPC with different preparations of MSC by using a novel assay based on gravitational force upon inversion. Adherent and non-adherent cells were then separated. Gene expression analysis by microarray (GeneChip Human Genome U133_Plus_2.0, Affymetrix) of the two populations was performed and the relationship to long-term hematopoietic culture initiating cell (LTC-IC) frequency examined. Results: HPC subsets with higher self-renewing capacity demonstrated significantly higher adherence to MSC from human bone marrow (CD34+vs. CD34−, CD34+/CD38−vs. CD34+/CD38+, slow dividing fraction vs. fast dividing fraction). LTC-IC frequency was significantly higher in the adherent fraction than in the non-adherent CD34+ cells, thus providing evidence for specific adhesive interaction of primitive HPC with MSC. Genes coding for adhesion proteins and extracellular matrix were highly expressed in the adherent fraction compared to non-adherent CD34+ cells. These genes included fibronectin1 (FN1), cadherin11, VCAM1, connexin43 and ITGBL1. Furthermore, affinity of CD34+ cells was analyzed on human MSC isolated from bone marrow (BM), adipose tissue (AT) and cord blood (CB). Affinity to BM-MSC was significantly higher compared to AT-MSC and CB-MSC. Gene expression in different MSC preparations (BM-MSC, AT-MSC and CB-MSC) correlated in various adhesion proteins with the differences observed in affinity of HPC (including cadherin11, VCAM1, N-cadherin, ITGB1, ITGA1, ITGA5, SDF-1 and osteopontin). Western blot analysis also confirmed higher protein expression of FN1, cadherin11, N-cadherin and ITGB1 in BM-MSC compared to AT-MSC and CB-MSC. Conclusion: MSC represent a model for the human hematopoietic niche. Primitive subsets of HPC have significantly higher affinity to BM-MSC. The essential role of specific junction proteins (cadherin11, VCAM1, N-cadherin) for stabilization of cell-cell contact is indicated by their significant higher expression on both sides of the heterotypic interaction.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2507-2507
Author(s):  
Özlem Demirel ◽  
Olivier Balló ◽  
Hubert Serve ◽  
Christian H. Brandts

Abstract The BCR-ABL oncogene activates several signaling pathways, most notably by constitutive phosphorylation of the signal transducer and activator of transcription protein 5 (STAT5). After phosphorylation and nuclear translocation, STAT5 transcriptionally activates numerous genes responsible for proliferation, survival and differentiation of hematopoietic stem and progenitor cells. Among the STAT5 target genes are suppressor of cytokine signaling (SOCS) proteins. SOCS proteins inhibit JAK kinases by multiple mechanisms, thereby terminating cytokine signaling in a classical negative feedback loop. The SOCS family of proteins comprises eight members: cytokine-inducible SRC homology 2 (SH2) domain protein (CIS) and SOCS1–SOCS7. SOCS1 is frequently silenced by hypermethylation in multiple myeloma and inactivating mutations have been found in Hodgkin lymphoma with consecutive increase in JAK2 kinase activity. More recently, we identified SOCS1 as a “conditional oncogene” in the context of the FLT3-ITD oncogene (Reddy et al, Blood 2012): SOCS1 significantly enhanced FLT3-ITD-mediated myeloid transformation, both in vitro and in vivo. We hypothesized that this may be a more general mechanism of transformation and therefore analyzed the role of SOCS proteins in BCR-ABL mediated transformation and leukemogenesis. First, we investigated gene expression levels of SOCS proteins in BCR-ABL positive (versus BCR-ABL negative) cell lines and primary ALL long term-cultured cells. Upon treatment with the BCR-ABL inhibitor imatinib, mRNA expression levels of CIS and SOCS1-4 were reduced. SOCS5-7 did not exhibit any changes and were non-responsive to ABL-kinase inhibition. In lineage-depleted primary murine bone marrow retrovirally transduced with BCR-ABL, high induction of CIS and SOCS1-3 mRNA was detected, while SOCS4-7 showed only minor changes. When overexpressed in IL-3 dependent cell lines, SOCS1 led to a very rapid cell death within few days. Similar effects were demonstrated for CIS and SOCS2 overexpression, however, with a slower kinetics. In contrast, BCR-ABL transduced cells were insensitive to SOCS1 overexpression. In colony formation assays performed with primary hematopoietic cells, expression of SOCS1 led to a significant decrease of colony numbers. Interestingly, co-expression of SOCS1 and BCR-ABL (hereafter abbreviated as SOCS1/BCR-ABL) also lowered colony numbers compared to cells expressing BCR-ABL alone. However, when cells were subjected to interferon alpha or interferon gamma treatment, SOCS1/BCR-ABL positive cells displayed higher colony numbers and gained a growth advantage over BCR-ABL expressing cells, since anti-proliferative effects of the cytokines were inhibited by the presence of SOCS1. A careful analysis of the downstream signaling cascade of BCR-ABL and SOCS1/BCR-ABL expressing cells did not demonstrate any differences in the phosphorylation of AKT, ERK1/2 and STAT5. However, when BCR-ABL was inhibited by imatinib, STAT5 phosphorylation was significantly decreased in SOCS1/BCR-ABL transduced cells. Finally, the influence of SOCS1 in BCR-ABL mediated leukemia was investigated in a murine bone marrow transplantation model. BCR-ABL or SOCS1/BCR-ABL expressing cells led to disease formation with a chronic myeloid leukemia-like phenotype. Interestingly, the co-expression of SOCS1 and BCR-ABL prolonged disease latency, as opposed to the phenotype observed with FLT3-ITD (where SOCS1 co-expression shortened latency). In this setting SOCS1 acts as a tumor suppressor, protecting BCR-ABL transformed cells from rapid disease development, and a molecular analysis will be presented. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5333-5333
Author(s):  
Hiroshi Ikeda ◽  
Tadao Ishida ◽  
Toshiaki Hayashi ◽  
Yuka Aoki ◽  
Yasuhisa Shinomura

Abstract The Bone marrow (BM) microenvironment plays crucial role in pathogenesis of multiple myeloma (MM). Paracrine secretion of cytokines in BM stromal cells promotes multiple myeloma cell proliferation and protects against drug-induced cytotoxicity. In current study, monocytes, component of BM cells, can directly promote mesenchymal stem cells osteogenic differentiation through cell contact interactions. Down-regulation of inhibitors such as DKK1 drives the differentiation of mesechymal stem cells into osteoblasts. In this study, we examined the role of monocytes as a potential niche component that supports myeloma cells. We investigated the proliferation of MM cell lines cultured alone or co-cultured with BM stromal cells, monocytes, or a combination of BM stromal cells and monocytes. Consistently, we observed increased proliferation of MM cell lines in the presence of either BM stromal cells or monocytes compared to cell line-only control. Furthermore, the co-culture of BM stromal cells plus monocytes induced the greatest degree of proliferation of myeloma cells. In addition to increased proliferation, BMSCs and monocytes decreased the rate of apoptosis of myeloma cells. Our results therefore suggest that highlights the role of monocyte as an important component of the BM microenvironment. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (7) ◽  
pp. 2211-2222 ◽  
Author(s):  
Shunsuke Kanada ◽  
Chiharu Nishiyama ◽  
Nobuhiro Nakano ◽  
Ryuyo Suzuki ◽  
Keiko Maeda ◽  
...  

Abstract In this study, we investigated the role of a transcription factor, PU.1, in the regulation of CD80 and CD86 expression in dendritic cells (DCs). A chromatin immunoprecipitation assay revealed that PU.1 is constitutively bound to the CD80 and CD86 promoters in bone marrow–derived DCs. In addition, co-expression of PU.1 resulted in the transactivation of the CD80 and CD86 promoters in a reporter assay. The binding of PU.1 to cis-enhancing regions was confirmed by electromobility gel-shift assay. As expected, inhibition of PU.1 expression by short interfering RNA (siRNA) in bone marrow–derived DCs resulted in marked down-regulation of CD80 and CD86 expression. Moreover, overexpression of PU.1 in murine bone marrow–derived lineage-negative cells induced the expression of CD80 and CD86 in the absence of monocyte/DC-related growth factors and/or cytokines. Based on these results, we conclude that PU.1 is a critical factor for the expression of CD80 and CD86. We also found that subcutaneous injection of PU.1 siRNA or topical application of a cream-emulsified PU.1 siRNA efficiently inhibited murine contact hypersensitivity. Our results suggest that PU.1 is a potential target for the treatment of immune-related diseases.


Sign in / Sign up

Export Citation Format

Share Document