Benzyladenine effects on the development of the photosynthetic apparatus in Zea mays: Studies on photosynthetic activity, enzymes and (etio)chloroplast ultrastructure

1986 ◽  
Vol 66 (4) ◽  
pp. 685-691 ◽  
Author(s):  
Marleen Caers ◽  
J. C. Vendrig
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 744
Author(s):  
Petra Peharec Štefanić ◽  
Karla Košpić ◽  
Daniel Mark Lyons ◽  
Lara Jurković ◽  
Biljana Balen ◽  
...  

Silver nanoparticles (AgNPs) are the most exploited nanomaterial in agriculture and food production, and their release into the environment raises concern about their impact on plants. Since AgNPs are prone to biotransformation, various surface coatings are used to enhance their stability, which may modulate AgNP-imposed toxic effects. In this study, the impact of AgNPs stabilized with different coatings (citrate, polyvinylpyrrolidone (PVP), and cetyltrimethylammonium bromide (CTAB)) and AgNO3 on photosynthesis of tobacco plants as well as AgNP stability in exposure medium have been investigated. Obtained results revealed that AgNP-citrate induced the least effects on chlorophyll a fluorescence parameters and pigment content, which could be ascribed to their fast agglomeration in the exposure medium and consequently weak uptake. The impact of AgNP-PVP and AgNP-CTAB was more severe, inducing a deterioration of photosynthetic activity along with reduced pigment content and alterations in chloroplast ultrastructure, which could be correlated to their higher stability, elevated Ag accumulation, and surface charge. In conclusion, intrinsic properties of AgNP coatings affect their stability and bioavailability in the biological medium, thereby indirectly contributing changes in the photosynthetic apparatus. Moreover, AgNP treatments exhibited more severe inhibitory effects compared to AgNO3, which indicates that the impact on photosynthesis is dependent on the form of Ag.


2018 ◽  
Vol 10 ◽  
pp. 01009
Author(s):  
Sławomir Kocira ◽  
Agnieszka Sujak ◽  
Tomasz Oniszczuk ◽  
Agnieszka Szparaga ◽  
Mariusz Szymanek ◽  
...  

Application of biostimulants instigates many physiological processes that enhance nutrition efficiency, abiotic stress tolerance, and quality traits of crops, regardless of their nutrient content. One of such preparations is Atonik which contains nitrophenol compounds naturally occurring in plant cells. Several studies have confirmed its beneficial effect on the growth, development, and improved metabolic activity of plants. Therefore, it seems advisable to investigate the effect of Atonik preparation on the photosynthetic activity of Moldavian dragonhead (Dracocephalum moldavica L.). The reported study was carried out in 2014 in Perespa, Poland. Over the growing season, Atonik was foliar-applied at a dose of 0.3 L/ha (0.1%) and 0.6 L/ha (0.2%) by single and double spraying of plants. Chlorophyll content and nitrogen status (N) were estimated by a Chlorophyll Meter SPAD-502 Plus. The foliar application of Atonik was found to improve the efficiency of the photosynthetic apparatus and chlorophyll content in the leaves of Dracocephalum moldavica plants, but the results were dependent on biostimulant concentration and number of its applications, and on the date of measurement. To conclude, Atonik is an environmental-friendly preparation which has a positive impact on the metabolic processes of plants.


Biologia ◽  
2008 ◽  
Vol 63 (5) ◽  
Author(s):  
Adriana Machlicová ◽  
L’udmila Slováková ◽  
Ján Hudák

AbstractBiochemical and accompanying structural characteristics of the photosynthetic process were studied in mustard seedlings cultivated on medium with increasing concentrations of cycloheximide alone as well as in combination with various kinetin concentrations. After 7 days of cultivation the contents of total chlorophyll, carotenoids and content of Rubisco in mustard cotyledons were determined. The content of chlorophyll pigments and carotenoids decreased in dependence of cycloheximide concentration. Following antibiotic treatment the content of both Rubisco subunits markedly decreased. In addition cycloheximide caused disturbance in mesophyll organization and chloroplast ultrastructure.Kinetin applied with cycloheximide increased the amount of photosynthetic pigments as well as of Rubisco, compared to the cycloheximide alone. In the seedlings treated with cycloheximide+kinetin the structure of leaf mesophyll and chloroplast membrane system was similar to control. Our results indicate that kinetin diminished the negative effects of cycloheximide on photosynthetic pigments and Rubisco as well as on the structural traits of the cotyledons.


2020 ◽  
Vol 21 (5) ◽  
pp. 1866 ◽  
Author(s):  
Krzysztof M. Tokarz ◽  
Wojciech Makowski ◽  
Barbara Tokarz ◽  
Monika Hanula ◽  
Ewa Sitek ◽  
...  

Ceylon leadwort (Plumbago zeylanica) is ornamental plant known for its pharmacological properties arising from the abundant production of various secondary metabolites. It often grows in lead polluted areas. The aim of presented study was to evaluate the survival strategy of P. zeylanica to lead toxicity via photosynthetic apparatus acclimatization. Shoots of P. zeylanica were cultivated on media with different Pb concentrations (0.0, 0.05, and 0.1 g Pb∙l−1). After a four-week culture, the efficiency of the photosynthetic apparatus of plants was evaluated by Chl a fluorescence measurement, photosynthetic pigment, and Lhcb1, PsbA, PsbO, and RuBisCo protein accumulation, antioxidant enzymes activity, and chloroplast ultrastructure observation. Plants from lower Pb concentration revealed no changes in photosynthetic pigments content and light-harvesting complex (LHCII) size, as well as no limitation on the donor side of Photosystem II Reaction Centre (PSII RC). However, the activity and content of antioxidant enzymes indicated a high risk of limitation on the acceptor side of Photosystem I. In turn, plants from 0.1 g Pb∙l−1 showed a significant decrease in pigments content, LHCII size, the amount of active PSII RC, oxygen-evolving complex activity, and significant remodeling of chloroplast ultrastructure indicated limitation of PSII RC donor side. Obtained results indicate that P. zeylanica plants acclimate to lead toxicity by Pb accumulation in roots and, depending on Pb concentration, by adjusting their photosynthetic apparatus via the activation of alternative (cyclic and pseudocyclic) electron transport pathways.


1977 ◽  
Vol 32 (9-10) ◽  
pp. 798-802 ◽  
Author(s):  
Claus Buschmann ◽  
Hartmut K. Lichtenthaler

Abstract The Hill-activity (reduction of DCPIP or methylviologen) and the concentration of P700 were studied in chloroplasts isolated from cotyledons of radish seedlings (R aphanus sativu s L. Saxa Treib), which had been grown with the addition of β-indoleacetic acid (IAA), kinetin, or gibberellic acid.1) The photosynthetic activity of young chloroplasts from 3 day old Raphanus seedlings is very high (c. 180 μmol O2/mol chlorophyll × h) and decreases continuously thereafter with increasing age. The steady state Hill-activity is readied after 8 to 10 days (values of 55 to 50 μmol 02/mg chlorophyll × h).2) Chloroplasts from plants treated with IAA or kinetin not only exhibit higher plastoquinone levels 1,2, but also a higher P700-content and a higher Hill-activity. The promotion effect is more pronounced with kinetin (+ 36 to 40%) than with IAA (+ 12 to 17%).3) Gibberellic acid has a different effect on composition and activity of chloroplasts. In younger seedlings the Hill-activity appears to be somewhat stimulated, without promotion effect on plasto­ quinone 2 or P700 concentration. After 10 days GA3-treated plants show signs of chlorosis combined with a strong decrease in photosynthetic activity.4) The data clearly demonstrate that the composition and activity of the photosynthetic ap­ paratus are under phytohormone control. IAA and even better kinetin promote the light induced formation of pigment systems and electrontransport chains. GA3 seems to block the rebuilding of the photosynthetic apparatus under steady state conditions.


2010 ◽  
Vol 73 (5) ◽  
pp. 982-986 ◽  
Author(s):  
Maria Drążkiewicz ◽  
Tadeusz Baszyński

Sign in / Sign up

Export Citation Format

Share Document