Analysis of Water Supply of Plants Under Saline Soil Conditions and Conclusions for Research on Crop Salt Tolerance

2008 ◽  
Vol 194 (1) ◽  
pp. 1-8 ◽  
Author(s):  
U. Schleiff
2021 ◽  
pp. 44-57
Author(s):  
Kh. A. Shaban ◽  
M. A. Esmaeil ◽  
A. K. Abdel Fattah ◽  
Kh. A. Faroh

A field experiment was carried out at Khaled Ibn El-waleed village, Sahl El-Hussinia, El-Sharkia Governorate, Egypt, during two summer seasons 2019 and 2020 to study the effect of NPK nanofertilizers, biofertilizers and humic acid combined with or without mineral fertilizers different at rates on some soil physical properties and soybean productivity and quality under saline soil conditions. The treatments consisted of: NPK-chitosan, NPK-Ca, humic acid, biofertilzer and control (mineral NPK only). In both seasons, the experiment was carried out in a split plot design with three replicates. The results indicated a significant increase in the soybean yield parameters as compared to control. There was also a significant increase in dry and water stable aggregates in all treatments as compared to control. The treatment NPK-Chitosan was the best in improving dry and stable aggregates. Also, hydraulic conductivity and total porosity values were significantly increased in all treatments due to increase in soil aggregation and porosity that led to increase in values of hydraulic conductivity. Values of bulk density were decreased, the lowest values of bulk density were found in NPK-chitosan treatment as a result of the high concentration of organic matter resulted from NPK-chitosan is much lighter in weight than the mineral fraction in soils. Accordingly, the increase in the organic fraction decreases the total weight and bulk density of the soil. Concerning soil moisture constants, all treatments significantly increased field capacity and available water compared to control. This increase was due to improvement of the soil aggregates and pores spaces which allowed the free movement of water within the soil thereby, increasing the moisture content at field capacity.


1998 ◽  
Vol 25 (5) ◽  
pp. 591 ◽  
Author(s):  
Yuncai Hu ◽  
Urs Schmidhalter

In this study, we quantified the spatial distributions of inorganic ions and sugars contributing to osmotic adjustment and their net deposition rates in the elongating and mature zones of leaf 4 of the main stem of spring wheat (Triticum aestivum L. cv. Lona) during its linear growth phase under saline soil conditions. Plants were grown in growth chambers in soil irrigated/treated with nutrient solution containing either no added or 120 mM NaCl. The sampling was conducted on the 3rd day after emergence of leaf 4 at 3 and 13 h into the 16 h photoperiod. The patterns of spatial distributions of total osmoticum, cation, anion and sugar contents (mmol kg-1 H2O) were distinct and were affected by salinity. The total osmoticum content in the region between 0 and 60 mm above the leaf base differed between the two harvests at 120 mM NaCl. Net deposition rates of total osmotica, cations, anions, and sugars (mmol kg-1 H2O h-1) in both treatments increased from the base of the leaf to the most actively elongating location and then decreased near the end of the elongation zone. Contributions of cations, anions, and sugars to osmotic adjustment varied with distance from the leaf base, and were about 21–30, 15–21, and 13%, respectively, in the elongation zone. We suggest that the accumulation of solutes under saline conditions occurs both by increasing the net deposition rate of osmotica and by reducing growth.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pibiao Shi ◽  
Minfeng Gu

Abstract Background Soil salinity is one of the major abiotic stress factors that affect crop growth and yield, which seriously restricts the sustainable development of agriculture. Quinoa is considered as one of the most promising crops in the future for its high nutrition value and strong adaptability to extreme weather and soil conditions. However, the molecular mechanisms underlying the adaptive response to salinity stress of quinoa remain poorly understood. To identify candidate genes related to salt tolerance, we performed reference-guided assembly and compared the gene expression in roots treated with 300 mM NaCl for 0, 0.5, 2, and 24 h of two contrasting quinoa genotypes differing in salt tolerance. Results The salt-tolerant (ST) genotype displayed higher seed germination rate and plant survival rate, and stronger seedling growth potential as well than the salt-sensitive (SS) genotype under salt stress. An average of 38,510,203 high-quality clean reads were generated. Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified to deeper understand the differential response. Transcriptome analysis indicated that salt-responsive genes in quinoa were mainly related to biosynthesis of secondary metabolites, alpha-Linolenic acid metabolism, plant hormone signal transduction, and metabolic pathways. Moreover, several pathways were significantly enriched amongst the differentially expressed genes (DEGs) in ST genotypes, such as phenylpropanoid biosynthesis, plant-pathogen interaction, isoquinoline alkaloid biosynthesis, and tyrosine metabolism. One hundred seventeen DEGs were common to various stages of both genotypes, identified as core salt-responsive genes, including some transcription factor members, like MYB, WRKY and NAC, and some plant hormone signal transduction related genes, like PYL, PP2C and TIFY10A, which play an important role in the adaptation to salt conditions of this species. The expression patterns of 21 DEGs were detected by quantitative real-time PCR (qRT-PCR) and confirmed the reliability of the RNA-Seq results. Conclusions We identified candidate genes involved in salt tolerance in quinoa, as well as some DEGs exclusively expressed in ST genotype. The DEGs common to both genotypes under salt stress may be the key genes for quinoa to adapt to salinity environment. These candidate genes regulate salt tolerance primarily by participating in reactive oxygen species (ROS) scavenging system, protein kinases biosynthesis, plant hormone signal transduction and other important biological processes. These findings provide theoretical basis for further understanding the regulation mechanism underlying salt tolerance network of quinoa, as well establish foundation for improving its tolerance to salinity in future breeding programs.


1999 ◽  
Vol 47 (4) ◽  
pp. 475 ◽  
Author(s):  
David T. Bell

Australian species germinate under the combination of environmental conditions where the potential for survival is enhanced. Most species also have dormancy mechanisms that prevent all seeds from germinating in any particular rainfall event. Immaturity of the embryo prevents some species from germinating until environmental parameters change to more favourable conditions. Seed-coat inhibitors may also delay germination, with some seed requiring ingestion and dispersal by animals or a series of rainfall cycles to facilitate germination. Adaptations to fire include germination mechanisms facilitated by impervious seed coats, seed-coat inhibitors and biochemical sensing of water-soluble components of smoke and the high soil nitrate levels found following the burning of vegetation. Germination is generally limited under saline soil conditions until rainfall dilutes concentrations to near-zero water potentials. Australian species tend to germinate under temperatures that approximate the rainfall season in their native habitat. Light sensing by Australian species ensures germination takes place only near the surface for some species or only under complete burial conditions in others. More recent research has emphasised the interaction of multiple and sequential cues to relieve dormancy and initiate germination. Knowledge of germination mechanisms provides a basis for better land management, enriched conservation, improved rehabilitation and advanced horticulture, forestry and farming practices.


2014 ◽  
Vol 64 ◽  
pp. 142-150 ◽  
Author(s):  
Youssef Ouni ◽  
Alfonso Albacete ◽  
Elena Cantero ◽  
Abdelbasset Lakhdar ◽  
Chedly Abdelly ◽  
...  

2013 ◽  
Vol 4 (1) ◽  
pp. 1-13
Author(s):  
B. Zayed ◽  
R. EL- Namaky ◽  
S. Seedek ◽  
H. El - Mowafi

Sign in / Sign up

Export Citation Format

Share Document