Computational simulation and experimental findings of three-dimensional fatigue crack growth in a single-edge notched specimen under torsion loading

2005 ◽  
Vol 28 (1-2) ◽  
pp. 127-134 ◽  
Author(s):  
F.-G. BUCHHOLZ ◽  
V. JUST ◽  
H. A. RICHARD
2007 ◽  
Vol 348-349 ◽  
pp. 129-132 ◽  
Author(s):  
Roberto G. Citarella ◽  
Friedrich G. Buchholz

In this paper detailed results of computational 3D fatigue crack growth simulations will be presented. The simulations for the crack path assessment are based on the DBEM code BEASY, and the FEM code ADAPCRACK 3D. The specimen under investigation is a SEN-specimen subject to pure anti-plane or out-of-plane four-point shear loading. The computational 3D fracture analyses deliver variable mixed mode II and III conditions along the crack front. Special interest is taken in this mode coupling effect to be found in stress intensity factor (SIF) results along the crack front. Further interest is taken in a 3D effect which is effective in particular at and adjacent to the two crack front corner points, that is where the crack front intersects the two free side surfaces of the specimen. Exactly at these crack front corner points fatigue crack growth initiates in the experimental laboratory test specimens, and develops into two separate anti-symmetric cracks with complex shapes, somehow similar to bird wings. The computational DBEM results are found to be in good agreement with these experimental findings and with FEM results previously obtained. Consequently, also for this new case, with complex 3D crack growth behaviour of two cracks, the functionality of the proposed DBEM and FEM approaches can be stated.


Author(s):  
Eskandari Hadi ◽  
Nami Mohammad Rahim

The problem of fatigue-crack-growth in a rotating disc at different crack orientation angles is studied by using an automated numerical technique, which calculates the stress intensity factors on the crack front through the three-dimensional finite element method. Paris law is used to develop the fatigue shape of initially semi-elliptical surface crack. Because of needs for the higher mesh density and accuracy near the crack, the sub-modeling technique is used in the analysis. The distribution of SIF’s along the crack front at each step of growth is studied and the effect of crack orientation on the rate of crack-growth is investigated. The calculated SIF’s are reasonable and could be used to predict the probable crack growth rates in fracture mechanics analysis and can help engineers to consider in their designing and to prevent any unwanted failure of such components.


2021 ◽  
Author(s):  
Yan-Hui Zhang ◽  
Matthew Doré

Abstract Most engineering components are subjected to cyclic loading in service and design against fatigue failure is often a key consideration in design. For fracture mechanics fatigue analysis, fatigue crack growth (FCG) tests are often required to determine the relevant Paris power law parameters for the material under the environment concerned. Standards allow use of different specimen geometries for FCG tests such as compact tension (CT), centre crack tension (CCT), single edge notch bend (SENB) and single edge notch tension (SENT). However, when selecting specimen geometry for fatigue crack growth rate (FCGR) testing, there is often doubt about which specimen geometry is more appropriate and whether they give similar FCGR. There is limited work to compare the FCGR between different specimen geometries. This paper first briefly introduces the guidance on FCG test specimen geometries in standards and compares the advantages and disadvantages of these specimen geometries. A comprehensive literature review is carried out to compare the FCGR data between different specimen geometries. FCGR tests are conducted on SENB, SENT and CCT specimens of C-Mn steel to investigate any effects of specimen symmetry/asymmetry and crack constraint on FCGR. Based on the literature review and test data, it is concluded that FCGR is independent of the specimen geometries examined.


Author(s):  
B. Shailesh Kamath ◽  
A.R. Anilchandra ◽  
T. Sivaranjani ◽  
K. Badari Narayana ◽  
C.M. Manjunath

Fatigue Crack Growth (FCG) behaviour in a Single-Edge-Notched Tension (SENT) specimen of 2024-T3 aluminium alloy under a standard mini-FALSTAFF spectrum load sequence was experimentally determined. Further, the FCG behaviour was predicted using cycle-by-cycle method and compared with experimental results. Prediction procedure involved are rain-flow counting of fatigue load cycles, estimation of crack driving force for each of the counted cycle and prediction of crack extension per cycle from constant amplitude crack growth rate equation. In the present work, a new crack driving force (CDF) K*eff involving Kujawski’s crack driving force K* in conjunction with Elber’s crack closure concept was used to account for load interaction effects. FCG prediction was also made using conventional CDF ΔKeff (Elber’s) approach. A good correlation was observed between experimental and predicted FCG behaviour under spectrum loads by the proposed K*eff approach. Also, this prediction was observed to be better than that predicted by conventional ΔKeff approach.


2006 ◽  
Vol 324-325 ◽  
pp. 1109-1112 ◽  
Author(s):  
Friedrich G. Buchholz ◽  
Victor Teichrieb

In this paper the rather complex 3D fatigue crack growth behaviour in a SEN-specimen under anti-plane shear loading is investigated by the aid of the programme ADAPCRACK3D and by application of a recently developed 3D fracture criterion. It will be shown that the computationally simulated results of fatigue crack growth in the FE-model of the specimen are in good agreement with experimental findings for the development of two anti-symmetric cracks, which originate from the two crack front corner points, that is where the crack front intersects the two free side surfaces of the laboratory SEN test-specimens. Consequently, also for this case with a rather complex 3D crack growth of two anti-symmetric cracks, the functionality of the ADAPCRACK3D-programme and the validity of the proposed 3D fracture criterion can be stated.


1989 ◽  
Vol 111 (4) ◽  
pp. 338-344 ◽  
Author(s):  
H. Alawi

Fatigue crack growth under random amplitude and sequence loading with peaks following the Rayleigh probability density function is simulated using the probabilistic model. Another attempt at fatigue life prediction under the above loads is made by converting random loads in to equivalent constant amplitude. Prediction results are compared with experimental findings. Empirical data for fatigue crack growth under random loads at different frequencies are compared with the results of prediction using the above techniques. Experimental results of three steels are used in this study to compare with the findings of the above prediction techniques. These steels are AISI 1018, AISI 4340 and stainless pH 17-7. It is seen that the probabilistic model produces reliable results. It conservatively predicts fatigue crack growth when no delay mechanism to retard crack growth is introduced.


Sign in / Sign up

Export Citation Format

Share Document