scholarly journals Ectopic expression of MgSM1, a Cerato-platanin family protein fromMagnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis

2009 ◽  
Vol 7 (8) ◽  
pp. 763-777 ◽  
Author(s):  
Yayun Yang ◽  
Huijuan Zhang ◽  
Guojun Li ◽  
Wei Li ◽  
Xiao’e Wang ◽  
...  
2019 ◽  
Vol 21 (1) ◽  
pp. 193
Author(s):  
Shanshan Tian ◽  
Xiangjing Yin ◽  
Peining Fu ◽  
Wei Wu ◽  
Jiang Lu

The protein family with nucleotide binding sites and leucine-rich repeat (NBS-LRR) in plants stimulates immune responses caused by effectors and can mediate resistance to hemi-biotrophs and biotrophs. In our previous study, a Toll-interleukin-1(TIR)-NBS-LRR gene cloned from Vitis amurensis “Shuanghong”, VaRGA1, was induced by Plasmopara viticola and could improve the resistance of tobacco to Phytophthora capsici. In this study, VaRGA1 in “Shuanghong” was also induced by salicylic acid (SA), but inhibited by jasmonic acid (JA). To investigate whether VaRGA1 confers broad-spectrum resistance to pathogens, we transferred this gene into Arabidopsis and then treated with Hyaloperonospora arabidopsidis (Hpa), Botrytis cinerea (B. cinerea), and Pseudomonas syringae pv. tomato DC3000 (PstDC3000). Results showed that VaRGA1 improved transgenic Arabidopsis thaliana resistance to the biotrophic Hpa and hemi-biotrophic PstDC3000, but decreased resistance to the necrotrophic B. cinerea. Additionally, qPCR assays showed that VaRGA1 plays an important role in disease resistance by activating SA and inhibiting JA signaling pathways. A 1104 bp promoter fragment of VaRGA1 was cloned and analyzed to further elucidate the mechanism of induction of the gene at the transcriptional level. These results preliminarily confirmed the disease resistance function and signal regulation pathway of VaRGA1, and contributed to the identification of R-genes with broad-spectrum resistance function.


PLoS Genetics ◽  
2013 ◽  
Vol 9 (9) ◽  
pp. e1003766 ◽  
Author(s):  
Carine Huard-Chauveau ◽  
Laure Perchepied ◽  
Marilyne Debieu ◽  
Susana Rivas ◽  
Thomas Kroj ◽  
...  

2021 ◽  
Author(s):  
Xingyu An ◽  
Hui Zhang ◽  
Jinlu Li ◽  
Rui Yang ◽  
Qianchun Zeng ◽  
...  

Abstract Background: The molecular mechanism of durable and broad-spectrum resistance to rice blast disease in japonica rice variety is still very little known. Ziyu44, a local japonica rice variety in Yunnan Province of China, has shown durable broad-spectrum blast resistance for more than 30 years, and provides an opportunity for us to explore the molecular basis of broad-spectrum resistance to rice blast in japonica rice variety.Methods and Results: We conducted a comparative study of mycelium growth, aposporium formation, the accumulation of salicylate(SA), jasmonate(JA) and H2O2, the expression of SA- and JA-associated genes between Ziyu44 and susceptible variety Jiangnanxiangnuo (JNXN) upon M. oryzae infection. We found that appressorium formation and invasive hyphae extention were greatly inhibited in Ziyu 44 leaves compared with that in JNXN leaves. Both Ziyu 44 and JNXN plants maintained high levels of baseline SA and did not show increased accumulation of SA after inoculation with M. oryzae, while the levels of baseline JA in Ziyu 44 and JNXN plants were relatively low, and the accumulation of JA exhibited markedly increased in Ziyu 44 plants upon M. oryzae infection. The expression levels of key genes involving JA and SA signaling pathway OsCOI1b, OsNPR1, OsMPK6 as well as pathogenesis-related (PR) genes OsPR1a, OsPR1b and OsPBZ1, were markedly up-regulated in Ziyu44. Conclusions: The level of endogenous JA is critical for synchronous activation of SA and JA signaling pathway, up-regulating PR gene expression and enhancing disease resistance against rice blast in Ziyu44.


2018 ◽  
Vol 218 (2) ◽  
pp. 661-680 ◽  
Author(s):  
Sara Sopeña-Torres ◽  
Lucía Jordá ◽  
Clara Sánchez-Rodríguez ◽  
Eva Miedes ◽  
Viviana Escudero ◽  
...  

2020 ◽  
Vol 33 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Huanpeng Li ◽  
Jiaojiao Wu ◽  
Xiaofeng Shang ◽  
Miaomiao Geng ◽  
Jing Gao ◽  
...  

In Arabidopsis, both pathogen invasion and benzothiadiazole (BTH) treatment activate the nonexpresser of pathogenesis-related genes 1 (NPR1)-mediated systemic acquired resistance, which provides broad-spectrum disease resistance to secondary pathogen infection. However, the BTH-induced resistance in Triticeae crops of wheat and barley seems to be accomplished through an NPR1-independent pathway. In the current investigation, we applied transcriptome analysis on barley transgenic lines overexpressing wheat wNPR1 (wNPR1-OE) and knocking down barley HvNPR1 (HvNPR1-Kd) to reveal the role of NPR1 during the BTH-induced resistance. Most of the previously designated barley chemical-induced (BCI) genes were upregulated in an NPR1-independent manner, whereas the expression levels of several pathogenesis-related (PR) genes were elevated upon BTH treatment only in wNPR1-OE. Two barley WRKY transcription factors, HvWRKY6 and HvWRKY70, were predicted and further validated as key regulators shared by the BTH-induced resistance and the NPR1-mediated acquired resistance. Wheat transgenic lines overexpressing HvWRKY6 and HvWRKY70 showed different degrees of enhanced resistance to Puccinia striiformis f. sp. tritici pathotype CYR32 and Blumeria graminis f. sp. tritici pathotype E20. In conclusion, the transcriptional changes of BTH-induced resistance in barley were initially profiled, and the identified key regulators would be valuable resources for the genetic improvement of broad-spectrum disease resistance in wheat. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Anna Manara ◽  
Zahra Imanifard ◽  
Linda Fracasso ◽  
Diana Bellin ◽  
Massimo Crimi

Abstract Objectives The purpose of this study was to explore whether plant programmed cell death (PCD) cascade can sense the presence of the animal-only BH3 protein Bid, a BCL-2 family protein known to play a regulatory role in the signaling cascade of animal apoptosis. Results We have expressed the mouse pro-apoptotic protein Bid in Arabidopsis thaliana and in Nicotiana tabacum. We did not obtain any transformed plant constitutively expressing the truncated protein (tBid—i.e. the caspase-activated form) whereas ectopic expression of the full-length protein (flBid) does not interfere with growth and development of the transformed plants. To verify whether the presence of this animal pro-apoptotic protein modified stress responses and PCD execution, both N. tabacum and A. thaliana plants constitutively expressing flBid have been studied under different stress conditions triggering cell death activation. The results show that the presence of flBid in transgenic plants did not significantly change the responses to abiotic stress (H2O2 or NO) and biotic stress treatments. Moreover, the finding that no Bid active form was present in treated tobacco plants suggests an absence of a proper activation of Bid.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Lorena Pizarro ◽  
Meirav Leibman-Markus ◽  
Rupali Gupta ◽  
Neta Kovetz ◽  
Ilana Shtein ◽  
...  

AbstractPlants rely on innate immunity to perceive and ward off microbes and pests, and are able to overcome the majority of invading microorganisms. Even so, specialized pathogens overcome plant defenses, posing a persistent threat to crop and food security worldwide, raising the need for agricultural products with broad, efficient resistance. Here we report a specific mutation in a tomato (S. lycopersicum) helper nucleotide-binding domain leucine-rich repeat H-NLR, SlNRC4a, which results in gain of function constitutive basal defense activation, in absence of PRR activation. Knockout of the entire NRC4 clade in tomato was reported to compromise Rpi-blb2 mediated immunity. The SlNRC4a mutant reported here possesses enhanced immunity and disease resistance to a broad-spectrum of pathogenic fungi, bacteria and pests, while lacking auto-activated HR or negative effects on plant growth and crop yield, providing promising prospects for agricultural adaptation in the war against plant pathogens that decrease productivity.


2019 ◽  
Vol 20 (22) ◽  
pp. 5523 ◽  
Author(s):  
Yasukazu Kanda ◽  
Hitoshi Nakagawa ◽  
Yoko Nishizawa ◽  
Takashi Kamakura ◽  
Masaki Mori

Plants activate their immune system through intracellular signaling pathways after perceiving microbe-associated molecular patterns (MAMPs). Receptor-like cytoplasmic kinases mediate the intracellular signaling downstream of pattern-recognition receptors. BROAD-SPECTRUM RESISTANCE 1 (BSR1), a rice (Oryza sativa) receptor-like cytoplasmic kinase subfamily-VII protein, contributes to chitin-triggered immune responses. It is valuable for agriculture because its overexpression confers strong disease resistance to fungal and bacterial pathogens. However, it remains unclear how overexpressed BSR1 reinforces plant immunity. Here we analyzed immune responses using rice suspension-cultured cells and sliced leaf blades overexpressing BSR1. BSR1 overexpression enhances MAMP-triggered production of hydrogen peroxide (H2O2) and transcriptional activation of the defense-related gene in cultured cells and leaf strips. Furthermore, the co-cultivation of leaves with conidia of the blast fungus revealed that BSR1 overexpression allowed host plants to produce detectable oxidative bursts against compatible pathogens. BSR1 was also involved in the immune responses triggered by peptidoglycan and lipopolysaccharide. Thus, we concluded that the hyperactivation of MAMP-triggered immune responses confers BSR1-mediated robust resistance to broad-spectrum pathogens.


Sign in / Sign up

Export Citation Format

Share Document