scholarly journals Relation of shoot growth phases in seedling oak to development of the tap root, lateral roots and fine root tips

1990 ◽  
Vol 115 (1) ◽  
pp. 23-27 ◽  
Author(s):  
RALPH HARMER
Weed Science ◽  
1972 ◽  
Vol 20 (4) ◽  
pp. 285-289 ◽  
Author(s):  
K. Hawxby ◽  
E. Basler ◽  
P. W. Santelmann

The absorption and translocation of14C-labeled α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin) and 2-(3,4-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione methazole from nutrient solutions of various temperatures by(Arachis hypogaeaL. ‘Starr’) seedlings were determined. The accumulation of trifluralin in roots at 24 hr after exposure to trifluralin was greatest at 21 C and decreased at higher temperatures up to 38 C. The amounts of trifluralin translocated and accumulated in hypocotyls, tops, and cotyledons were small but generally increased with temperature. The initial rate of absorption of trifluralin was greater in excised lateral root tips than in tap root tips, but there was a greater accumulation in excised tap roots at 24 hr. The initial rates of absorption were higher for excised lateral roots at high temperatures. Total absorption of trifluralin at equilibrium was not proportional to the initial rates of absorption but was highest at low (21 C) and high (38 C) temperatures for excised lateral roots. The absorption of methazole by roots and translocation to other plant parts increased linearly with temperature, and it tended to accumulate in the mature leaf tissue.


1971 ◽  
Vol 49 (1) ◽  
pp. 63-67 ◽  
Author(s):  
G. C. Marks ◽  
J. E. Mitchell

Penetration of the fine roots of Vernal alfalfa by Phytophthora megasperma was investigated in solution culture. The zoospores encysted on the root tips around the zone of cell division and cell extension and directly penetrated the host by a small infection peg. No appressoria were observed, but the flattened base of the cyst adhered to the host and appeared to serve the same function. Inside the root the hyphae were inter- and intra-cellular. In naturally infested and artificially inoculated field soils most of the fine roots were destroyed and large lesions appeared on the tap root. The latter originated from infection of the spongy-phellem cells formed around the base of the fine lateral roots. Restricted lesion development on the tap root was associated with the formation of wound periderm around the infection court. No wound periderm was formed when the vascular system was infected and only minor damage occurred when invasion was restricted to the cortex. Root damage reduced growth rates in older plants and severe infection produced yellow foliage, premature defoliation, and wilting.


1975 ◽  
Vol 23 (6) ◽  
pp. 867 ◽  
Author(s):  
DH Ashton

During the first season, E. regnans develops a fairly strong tap-root, and later commences to produce a system of laterals. Seedling shoot growth is slow at first but increases rapidly. In the sapling stage, sinker roots develop from the laterals which extend far beyond the crown. Growth in height of the tree is very fast. During the pole stage, the conical crown is well developed, sinker roots become branched and the tap-root dies back. In the spar stage, the crown approaches maximum height and expands greatly. The sinker and lateral roots become very well developed. During the long mature stage, the fully elevated crowns become open and commence to die back. Buttresses are prominent and a complex system of sinker roots is present. Overmaturity is marked by a very large trunk epicormic growth and progressive die-back of the central area of both crown and roots. On warmer and drier aspects the root systems of seedlings and pole stage trees appear to be less well developed than on the cooler and moister aspects. On steep slopes, the root systems of pole stage trees may develop asymetrically. Layering of prostrate trees may occur on southerly slopes and root fusion between trees is relatively common. In swamps, vertical roots are short and trees are very unstable. Pornaderris aspera, one of the more common understorey species, develops a shallower and less spreading root system than E. regnans. In the early stages the lateral roots of both species are shallow and occupy the same soil zones; competition for moisture and nutrients is therefore likely to be very intense.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tina Unuk Nahberger ◽  
Gian Maria Niccolò Benucci ◽  
Hojka Kraigher ◽  
Tine Grebenc

AbstractSpecies of the genus Tuber have gained a lot of attention in recent decades due to their aromatic hypogenous fruitbodies, which can bring high prices on the market. The tendency in truffle production is to infect oak, hazel, beech, etc. in greenhouse conditions. We aimed to show whether silver fir (Abies alba Mill.) can be an appropriate host partner for commercial mycorrhization with truffles, and how earthworms in the inoculation substrate would affect the mycorrhization dynamics. Silver fir seedlings inoculated with Tuber. aestivum were analyzed for root system parameters and mycorrhization, how earthworms affect the bare root system, and if mycorrhization parameters change when earthworms are added to the inoculation substrate. Seedlings were analyzed 6 and 12 months after spore inoculation. Mycorrhization with or without earthworms revealed contrasting effects on fine root biomass and morphology of silver fir seedlings. Only a few of the assessed fine root parameters showed statistically significant response, namely higher fine root biomass and fine root tip density in inoculated seedlings without earthworms 6 months after inoculation, lower fine root tip density when earthworms were added, the specific root tip density increased in inoculated seedlings without earthworms 12 months after inoculation, and general negative effect of earthworm on branching density. Silver fir was confirmed as a suitable host partner for commercial mycorrhization with truffles, with 6% and 35% mycorrhization 6 months after inoculation and between 36% and 55% mycorrhization 12 months after inoculation. The effect of earthworms on mycorrhization of silver fir with Tuber aestivum was positive only after 6 months of mycorrhization, while this effect disappeared and turned insignificantly negative after 12 months due to the secondary effect of grazing on ectomycorrhizal root tips.


1995 ◽  
Vol 120 (2) ◽  
pp. 211-216 ◽  
Author(s):  
J. Roger Harris ◽  
Nina L. Bassuk ◽  
Richard W. Zobel ◽  
Thomas H. Whitlow

The objectives of this study were to determine root and shoot growth periodicity for established Fraxinus pennsylvanica Marsh. (green ash), Quercus coccinea Muenchh. (scarlet oak), Corylus colurna L. (Turkish hazelnut), and Syringa reticulata (Blume) Hara `Ivory Silk' (tree lilac) trees and to evaluate three methods of root growth periodicity measurement. Two methods were evaluated using a rhizotron. One method measured the extension rate (RE) ofindividual roots, and the second method measured change in root length (RL) against an observation grid. A third method, using periodic counts of new roots present on minirhizotrons (MR), was also evaluated. RE showed the least variability among individual trees. Shoot growth began before or simultaneously with the beginning of root growth for all species with all root growth measurement methods. All species had concurrent shoot and root growth, and no distinct alternating growth patterns were evident when root growth was measured by RE. Alternating root and shoot growth was evident, however, when root growth was measured by RL and MR. RE measured extension rate of larger diameter lateral roots, RL measured increase in root length of all diameter lateral roots and MR measured new root count of all sizes of lateral and vertical roots. Root growth periodicity patterns differed with the measurement method and the types of roots measured.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1722
Author(s):  
Lidiya Vysotskaya ◽  
Guzel Akhiyarova ◽  
Arina Feoktistova ◽  
Zarina Akhtyamova ◽  
Alla Korobova ◽  
...  

Although changes in root architecture in response to the environment can optimize mineral and water nutrient uptake, mechanisms regulating these changes are not well-understood. We investigated whether P deprivation effects on root development are mediated by abscisic acid (ABA) and its interactions with other hormones. The ABA-deficient barley mutant Az34 and its wild-type (WT) were grown in P-deprived and P-replete conditions, and hormones were measured in whole roots and root tips. Although P deprivation decreased growth in shoot mass similarly in both genotypes, only the WT increased primary root length and number of lateral roots. The effect was accompanied by ABA accumulation in root tips, a response not seen in Az34. Increased ABA in P-deprived WT was accompanied by decreased concentrations of cytokinin, an inhibitor of root extension. Furthermore, P-deficiency in the WT increased auxin concentration in whole root systems in association with increased root branching. In the ABA-deficient mutant, P-starvation failed to stimulate root elongation or promote branching, and there was no decline in cytokinin and no increase in auxin. The results demonstrate ABA’s ability to mediate in root growth responses to P starvation in barley, an effect linked to its effects on cytokinin and auxin concentrations.


Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 223 ◽  
Author(s):  
Murali Vuyyuru ◽  
Hardev Sandhu ◽  
James McCray ◽  
Richard Raid

Sugarcane (Saccharum spp. hybrid) successive planting (also called monoculture) causes serious yield losses and its management is not well studied in Histosols. Based on very few studies in other sugarcane regions, root colonization by harmful soil fungi is considered as a major cause of this yield decline, but there is lack of knowledge on its management in Histosols. A two-year greenhouse study was conducted with soil-drench application of mancozeb, mefenoxam, and azoxystrobin fungicides to determine their effects on early root and shoot growth, soil microbial communities, and nutrient uptake by plants. The study indicated that mancozeb soil application improved sugarcane-shoot and -root dry matter by 3–4 times and shoot-root length, fine-root length, and root surface area by 2–3 times compared to untreated soil. Phospholipid fatty acid (PLFA) analyses of sugarcane rhizosphere soil showed significant reduction in fungal-biomarker abundance with mancozeb and azoxystrobin in comparison to the untreated check or mefenoxam treatments. Bacterial functional-group abundance was reduced by mancozeb and mefenoxam. All fungicides significantly reduced mycorrhizal colonization but not mycorrhizal spore counts. There was a functional relationship between fine-root systems and higher tissue concentration of nitrogen and silicon. The study indicated that application of fungicides to the soil may improve early root and shoot growth and plant-cane establishment that can potentially reduce the yield decline in successively planted sugarcane in histosols. Additional field research is needed in the future to determine the fungicide soil application method, sugarcane growth response in whole crop cycles, and any environmental effects.


2019 ◽  
Vol 61 (3) ◽  
pp. 546-553
Author(s):  
Kiyoshi Yamazaki ◽  
Yoshihiro Ohmori ◽  
Toru Fujiwara

Abstract Plants take up water and nutrients through roots, and uptake efficiency depends on root behavior. Roots recognize the moisture gradient in the soil and grow toward the direction of high moisture. This phenomenon is called hydrotropism, and it contributes to efficient water uptake. As nutrients in soil are also unevenly distributed, it is beneficial for plants to grow their roots in the direction of increasing nutrient concentrations, but such a phenomenon has not been demonstrated. Here, we describe the directional growth of roots in response to a nutrient gradient. Using our assay system, the gradient of a nitrogen nutrient, NH4+, was sufficient to stimulate positive tropic responses of rice lateral roots. This phenomenon is a tropism of plant roots to nutrients; hence, we propose the name ‘nutritropism’. As well as other tropisms, differential cell elongation was observed before the elongation zone during nutritropism, but the pattern promoting cell elongation preferentially on the non-stimulated side was opposite to those in root hydrotropism and gravitropism. Our evaluation of the NH4+ gradient suggested that the root tips responded to a sub-micromolar difference in NH4+ concentration on both sides of the root. Hydrotropism, gravitropism and phototropism were described in plants as the ‘power of movement’ by Charles and Francis Darwin in 1880, and these three tropisms have attracted the attention of plant scientists for more than 130 years. Our discovery of nutritropism represents the fourth ‘power of movement’ in plants and provides a novel root behavioral property used by plants to acquire nutrients efficiently.


1973 ◽  
Vol 24 (4) ◽  
pp. 497 ◽  
Author(s):  
KC Hodgkinson

Lucerne plants (Medicogo sativa cv. Hunter River) were either frequently or infrequently cut down and subsequent differences in shoot regrowth were compared in two experiments. The first experiment demonstrated that differences in final shoot weights arose from differences developed during the first 7 days of regrowth. High level cutting (15 cm) increased the shoot yield of frequently but not of infrequently cut plants. Net uptake of both nitrogen and phosphorus was related to the growth rate of shoots until commencement of flowering, when uptake ceased for c. 15 days even though both roots and shoots continued to gain weight. Towards the end of flowering uptake of nitrogen and phosphorus recommenced and accumulation of both nutrients occurred in the tap-root and lateral roots. The relative nitrogen and phosphorus content of leaves on crown shoots was highest on day 7 and the same for frequently and infrequently cut plants. Leaves on crown and stubble shoots 7 days after high level cutting had a significantly lower relative nitrogen and phosphorus content than leaves on plants cut low. Thereafter the relative nitrogen and phosphorus content of a11 leaves declined with the greatest decline occurring after the commencement of flowering. In the second experiment early morphogenesis of the shoot population was investigated. Establishment of shoots was completed between 3 and 5 days after cutting. Higher shoot weights on infrequently cut plants were accounted for by a larger number of small shoots at the time of cutting. Relative growth rates of shoots did not appear to be influenced by prior cutting frequency. The relative nitrogen content of buds and shoot apices was low at cutting but doubled within 2 or 3 days and then declined after day 7. These results are discussed in relation to the role of 'plant factors' in shoot regrowth of lucerne.


2009 ◽  
Vol 60 (1) ◽  
pp. 43 ◽  
Author(s):  
Tiernan A. O'Rourke ◽  
Tim T. Scanlon ◽  
Megan H. Ryan ◽  
Len J. Wade ◽  
Alan C. McKay ◽  
...  

Pasture decline is considered to be a serious challenge to agricultural productivity of subterranean clover across southern Australia. Root disease is a significant contributing factor to pasture decline. However, root disease assessments are generally carried out in the early part of the growing season and in areas predominantly sown to permanent pastures. For this reason, in spring 2004, a survey was undertaken to determine the severity of root disease in mature subterranean clover plants in pastures located in the wheatbelt of Western Australia. DNA-based soil assays were used to estimate population density in the soil of a variety of soil-borne pathogens known to commonly occur in the Mediterranean-type environments of southern Australia. The relationships between severity of disease on tap and lateral roots and root diameter, root length, nodulation, and total rainfall were determined. The survey showed, for the first time, that severe root disease is widespread in spring across the wheatbelt of Western Australia. There was a positive correlation between rainfall and tap root disease, and between tap root disease and average root diameter of the entire root system. Despite the high levels of root disease present across the sites, the DNA of most root disease pathogens assayed was detected in trace concentrations. Only Pythium Clade F showed high DNA concentrations in the soil. DNA concentrations in the soil, in particular for Phytophthora clandestina and Rhizoctonia solani AG 2.1 and AG 2.2, were higher in the smaller autumn sampling in 2006. This study suggests that the productivity of subterranean clover-based pastures is severely compromised by root rot diseases throughout the growing season in the wheatbelt of Western Australia.


Sign in / Sign up

Export Citation Format

Share Document