Ex-SituStress Measurements in Polycrystalline Ceramics Using Photo-Stimulated Luminescence Spectroscopy and High-Energy X-Rays

2009 ◽  
Vol 92 (7) ◽  
pp. 1567-1573 ◽  
Author(s):  
Seetha Raghavan ◽  
Peter K. Imbrie
Author(s):  
A.J. Tousimis

An integral and of prime importance of any microtopography and microanalysis instrument system is its electron, x-ray and ion detector(s). The resolution and sensitivity of the electron microscope (TEM, SEM, STEM) and microanalyzers (SIMS and electron probe x-ray microanalyzers) are closely related to those of the sensing and recording devices incorporated with them.Table I lists characteristic sensitivities, minimum surface area and depth analyzed by various methods. Smaller ion, electron and x-ray beam diameters than those listed, are possible with currently available electromagnetic or electrostatic columns. Therefore, improvements in sensitivity and spatial/depth resolution of microanalysis will follow that of the detectors. In most of these methods, the sample surface is subjected to a stationary, line or raster scanning photon, electron or ion beam. The resultant radiation: photons (low energy) or high energy (x-rays), electrons and ions are detected and analyzed.


2020 ◽  
Vol 33 (6) ◽  
pp. 11-16
Author(s):  
K. E. Nygren, ◽  
D. C. Pagan, ◽  
J. P. C. Ruff ◽  
E. Arenholz ◽  
J. D. Brock

2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Hidetoshi Sano ◽  
Yasuo Fukui

AbstractWe review recent progress in elucidating the relationship between high-energy radiation and the interstellar medium (ISM) in young supernova remnants (SNRs) with ages of ∼2000 yr, focusing in particular on RX J1713.7−3946 and RCW 86. Both SNRs emit strong nonthermal X-rays and TeV $\gamma $ γ -rays, and they contain clumpy distributions of interstellar gas that includes both atomic and molecular hydrogen. We find that shock–cloud interactions provide a viable explanation for the spatial correlation between the X-rays and ISM. In these interactions, the supernova shocks hit the typically pc-scale dense cores, generating a highly turbulent velocity field that amplifies the magnetic field up to 0.1–1 mG. This amplification leads to enhanced nonthermal synchrotron emission around the clumps, whereas the cosmic-ray electrons do not penetrate the clumps. Accordingly, the nonthermal X-rays exhibit a spatial distribution similar to that of the ISM on the pc scale, while they are anticorrelated at sub-pc scales. These results predict that hadronic $\gamma $ γ -rays can be emitted from the dense cores, resulting in a spatial correspondence between the $\gamma $ γ -rays and the ISM. The current pc-scale resolution of $\gamma $ γ -ray observations is too low to resolve this correspondence. Future $\gamma $ γ -ray observations with the Cherenkov Telescope Array will be able to resolve the sub-pc-scale $\gamma $ γ -ray distribution and provide clues to the origin of these cosmic $\gamma $ γ -rays.


2020 ◽  
Vol 494 (3) ◽  
pp. 4357-4370
Author(s):  
B Olmi ◽  
D F Torres

ABSTRACT Identification and characterization of a rapidly increasing number of pulsar wind nebulae is, and will continue to be, a challenge of high-energy gamma-ray astrophysics. Given that such systems constitute -by far- the most numerous expected population in the TeV regime, such characterization is important not only to learn about the sources per se from an individual and population perspective, but also to be able to connect them with observations at other frequencies, especially in radio and X-rays. Also, we need to remove the emission from nebulae in highly confused regions of the sky for revealing other underlying emitters. In this paper, we present a new approach for theoretical modelling of pulsar wind nebulae: a hybrid hydrodynamic-radiative model able to reproduce morphological features and spectra of the sources, with relatively limited numerical cost.


2010 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
David Pennicard ◽  
Heinz Graafsma ◽  
Michael Lohmann

The new synchrotron light source PETRA-III produced its first beam last year. The extremely high brilliance of PETRA-III and the large energy range of many of its beamlines make it useful for a wide range of experiments, particularly in materials science. The detectors at PETRA-III will need to meet several requirements, such as operation across a wide dynamic range, high-speed readout and good quantum efficiency even at high photon energies. PETRA-III beamlines with lower photon energies will typically be equipped with photon-counting silicon detectors for two-dimensional detection and silicon drift detectors for spectroscopy and higher-energy beamlines will use scintillators coupled to cameras or photomultiplier tubes. Longer-term developments include ‘high-Z’ semiconductors for detecting high-energy X-rays, photon-counting readout chips with smaller pixels and higher frame rates and pixellated avalanche photodiodes for time-resolved experiments.


2009 ◽  
Vol 73 (3) ◽  
pp. 869-877 ◽  
Author(s):  
Kyle Kurpinski ◽  
Deok-Jin Jang ◽  
Sanchita Bhattacharya ◽  
Bjorn Rydberg ◽  
Julia Chu ◽  
...  

2006 ◽  
Vol 524-525 ◽  
pp. 619-624 ◽  
Author(s):  
Mark R. Terner ◽  
Peter Hedström ◽  
Jonathan Almer ◽  
J. Ilavsky ◽  
Magnus Odén

Residual stresses and microstructural changes during phase separation in Ti33Al67N coatings were examined using microfocused high energy x-rays from a synchrotron source. The transmission geometry allowed simultaneous acquisition of x-ray diffraction data over 360° and revealed that the decomposition at elevated temperatures occurred anisotropically, initiating preferentially along the film plane. The as-deposited compressive residual stress in the film plane first relaxed with annealing, before dramatically increasing concurrently with the initial stage of phase separation where metastable, nm-scale c-AlN platelets precipitated along the film direction. These findings were further supported from SAXS analyses.


Author(s):  
Fernando P. de Faria ◽  
Andy Petroianu ◽  
Luciene G. Mota ◽  
Simone O.A. Fernandes ◽  
Jony M. Geraldo ◽  
...  

2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


2015 ◽  
Vol 31 ◽  
pp. e49-e50 ◽  
Author(s):  
F. Delaunay ◽  
M. Pimpinella ◽  
S. Duane
Keyword(s):  
X Rays ◽  

Sign in / Sign up

Export Citation Format

Share Document