scholarly journals Effect of carbon source supply and its location on competition between inoculated and established bacterial strains in sterile soil microcosm

1999 ◽  
Vol 29 (4) ◽  
pp. 331-339 ◽  
Author(s):  
Philippe Duquenne ◽  
Claire Chenu ◽  
Guy Richard ◽  
Gérard Catroux
2021 ◽  
Vol 36 ◽  
pp. 05003
Author(s):  
Nguyen Van Zhang ◽  
Nguyen Thi Thu ◽  
Vu Thi Linh ◽  
V.V. Pylnev ◽  
M.I. Popchenko

This work presents the experimental study results of the influence of the culture medium on the ability to IAA synthesis of three endophytic strains TH10R, TH11T, and TH13T from roots of Ipomoea pes-caprae. Three investigated strains give the highest IAA concentration after 96 h of cultivation. A significant increase in IAA biosynthesis was obtained by cultivating the TH10R strain in a medium containing lactose or starch as a carbon source and NH4Cl or KNO3 as a nitrogen source. The TH11T strain produces the maximum amount of IAA, using glucose or xylose and KNO3 or NH4NO3 as carbon and nitrogen sources, respectively. Sucrose is a suitable carbon source for the TH13T strain; on a sucrose-containing medium, the TH13T strain produces the highest IAA amount. The most active strain is TH10R, identified as Bacillus mycoides and named Bacillus mycoides TH10R.


Microbiology ◽  
2010 ◽  
Vol 156 (4) ◽  
pp. 1221-1233 ◽  
Author(s):  
Jan Hendrik Wübbeler ◽  
Nadine Bruland ◽  
Milena Wozniczka ◽  
Alexander Steinbüchel

Application of the non-toxic 3,3′-thiodipropionic acid (TDP) and 3,3′-dithiodipropionic acid (DTDP) as precursors for the microbial production of polythioesters (PTEs), a class of biologically persistent biopolymers containing sulphur in the backbone, was successfully established previously. However, synthesis of PTEs containing 4-mercaptobutyrate (4MB) as building blocks could not be achieved. The very harmful 4MB is not used as a PTE precursor or as the carbon source for growth by any known strain. As a promising alternative, the harmless oxidized disulfide of two molecules of 4MB, 4,4′-dithiodibutyric acid (DTDB), was employed for enrichments of bacterial strains capable of biodegradation. Investigation of novel precursor substrates for PTEs and comparison of respective strains growing on TDP, DTDP and DTDB as sole carbon source was accomplished. A broad variety of bacteria capable of using one of these organic sulphur compounds were isolated and compared. TDP and DTDP were degraded by several strains belonging to different genera, whereas all DTDB-utilizing strains were affiliated to the species Rhodococcus erythropolis. Transposon mutagenesis of R. erythropolis strain MI2 and screening of 7500 resulting mutants yielded three mutants exhibiting impaired growth on DTDB. Physiological studies revealed production of volatile hydrogen sulphide and accumulation of significant amounts of 4MB, 4-oxo-4-sulphanylbutanoic acid and succinic acid in the culture supernatants. Based on this knowledge, a putative pathway for degradation of DTDB was proposed: DTDB could be cleaved into two molecules of 4MB, followed by an oxidation yielding 4-oxo-4-sulphanylbutanoic acid. A putative desulphydrase probably catalyses the abstraction of sulphur, thereby generating succinic acid and hydrogen sulphide.


2016 ◽  
Vol 9 (1) ◽  
pp. 62-67 ◽  
Author(s):  
R. Jame ◽  
V. Zelená ◽  
B. Lakatoš ◽  
Ľ. Varečka

Abstract Five bacterial isolates were tested for their ability to generate hydrogen during anaerobic fermentation with various carbon sources. One isolate from sheep rumen was identified as Escherichia coli and four isolates belonged to Clostridium spp. Glucose, arabinose, ribose, xylose, lactose and cellobiose were used as carbon sources. Results showed that all bacterial strains could utilize these compounds, although the utilization of pentoses diminished growth yield. The excretion of monocarboxylic acids (acetate, propionate, formiate, butyrate) into medium was changed after replacing glucose by other carbon sources. Di- and tricarboxylic acids were excreted in negligible amounts only. Spectra of excreted carboxylic acids were unique for each strain and all carbon sources. All isolates produced H2 between 4—9 mmol·L−1 during the stationary phase of growth with glucose as energy source. This value was dramatically reduced when pentoses were used as carbon source. Lactose and cellobiose, starch and cellulose were suitable substrates for the H2 production in some but not all isolates. No H2 was produced by proteinaceous substrate, such as blood. Results show that both substrate utilization and physiological responses (growth, excretion of carboxylates, H2 production) are unique functions of each isolate.


2016 ◽  
Vol 27 (1) ◽  
pp. 44-47 ◽  
Author(s):  
Mihaela Carmen Eremia ◽  
Irina Lupescu ◽  
Mariana Vladu ◽  
Maria Petrescu ◽  
Gabriela Savoiu ◽  
...  

Abstract Polyhydroxyalcanoates (PHAs) are specifically produced by a wide variety of bacteria, as an intracellular energy reserve in the form of homo- and copolymers of [R]-β-hydroxyalkanoic acids, depending on the C source used for microorganism growth, when the cells are grown under stressing conditions. In this paper we present microbiological accumulation of poly-3-hydroxyoctanoate (PHO) by using a consortium of bacterial strains, Pseudomonas putida and Bacillus subtilis, in a rate of 3:1, grown on a fermentation medium based on sodium octanoate as the sole carbon source. The experiments performed in the above mentioned conditions led to the following results: from 18.70 g sodium octanoate (7.72 g/L in the fermentation medium) used up during the bioprocess, 3.93-3.96 g/L dry bacterial biomass and 1.834 - 1.884 g/L PHA, containing 85.83 - 86.8% PHO, were obtained.


2005 ◽  
Vol 52 (9) ◽  
pp. 265-273 ◽  
Author(s):  
R. Butler ◽  
A.R. Godley ◽  
R. Lake ◽  
L. Lytton ◽  
E. Cartmell

A potential remediation technique for groundwater contaminated by bromate has been investigated, utilising biological bromate reduction to bromide by augmentation of indigenous microbial populations. This technique, involving addition of a carbon source to contaminated groundwater, is being developed as an ex-situ methodology analogous to commercial denitrification systems, but may also havein-situ applications. Trials have focussed on a laboratory-scale anaerobic suspended growth chemostat system, investigating glucose addition to real groundwater supplies. Steady states for a range of glucose and bromate concentrations demonstrated bromate reduction up to 700μgl−1 (50% of 1400μgl−1 influent) with glucose excess (above 52mgl−1), but specific reduction rates (up to 2.83μmol Br.g dry wt−1hr−1 for 1400μgl−1 bromate influent) were low compared to denitrification (up to 305μmol Ng dry wt−1hr−1). More recent enrichment trials have demonstrated reduction of 32mgl−1 bromate within a 40 hour residence time with specific reduction rates of up to 160.48μmol Br.g dry wt−1hr−1, suggesting the presence of high rate bromate reducing bacterial strains.


2014 ◽  
Vol 40 (2) ◽  
pp. 81-89 ◽  
Author(s):  
Hanane Sayel ◽  
Nezha Tahri Joutey ◽  
Wifak Bahafid ◽  
Naima El Ghachtouli

Abstract Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre) in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI) in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.


1993 ◽  
Vol 39 (3) ◽  
pp. 297-303 ◽  
Author(s):  
Michelle F. Manuel ◽  
Gesine A. Wisse ◽  
Robert A. MacLeod

Two Gram-negative heterotrophic marine bacterial strains had been reported not to require Na+ when grown on a chemically defined medium solidifed with purified agar and prepared without added Na+. When these strains were tested in a chemically defined liquid medium they required at least 3 mM Na + for growth. The agar used in the plating medium was found to contribute 3.3 mM Na+. Increasing the concentrations of Na+ in the liquid medium above 3 mM increased the rate and extent of growth of both organisms and decreased the lag periods. Optimal Na+ concentrations for growth varied from 100 to 500 mM depending on the organism and the carbon source in the medium. Na+ was also required for the transport of the carbon source into the cells. For the maximal rate of transport of L-glutamate, one organism required only 10 mM Na +, the other, 50 mM. For acetate and succinate transport the optimal Na+ concentrations varied from 30 to 200 mM depending on the substrate and the organism. When the initial rate of transport of glutamate into one of the organisms was plotted against Na+ concentration the reponse curve was sigmoid and a Hill plot of the data indicated that the transport protein may possess three binding sites for Na+. Evidence was obtained indicating that both organisms possess a Na+-stimulated NADH oxidase. The results indicate that there are marine bacteria that grow to a limited extent at appreciably lower concentrations of Na+ than have been realized previously and for these a much more definitive examination of the requirement for Na+ is necessary.Key words: marine bacteria, Na+ requirement, growth, membrane transport, NADH oxidase.


1999 ◽  
Vol 45 (3) ◽  
pp. 273-278 ◽  
Author(s):  
Bruce H Bleakley ◽  
Xiang Chen

Most characterized strains of the bacterium Photorhabdus luminescens are symbionts of entomopathogenic nematodes, whereas other strains have been isolated from human clinical specimens. The ability of P. luminescens strains to survive and grow in soil has received limited attention, with some studies indicating these bacteria have little or no ability to persist in soil. Survival and (or) growth of P. luminescens strains in previously sterilized soil, and examination of different soil amendments on their numbers in soil, have not been previously reported. Entomopathogenic P. luminescens (ATCC 29999) and a human clinical isolate (ATCC 43949) were introduced into a soil that had been sterilized by autoclaving, with or without different soil amendments, and bacterial numbers were estimated over time by viable plate count. In the previously sterilized soil receiving no exogenous amendments, numbers fell drastically over a week's time, followed by an increase in numbers by day 30. Treatments involving the addition of calcium carbonate and gelatin or casamino acids to soil usually resulted in higher bacterial numbers. For some sampling dates and soil treatments, there were statistically significant differences between the numbers of the two bacterial strains recovered from soil. The two strains of P. luminescens used in this study were able to survive and grow after being inoculated into previously sterilized soil.Key words: Photorhabdus luminescens, survival, soil.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Panagiota M. Stathopoulou ◽  
Alexander L. Savvides ◽  
Amalia D. Karagouni ◽  
Dimitris G. Hatzinikolaou

In a bioprospecting effort towards novel thermostable lipases, we assessed the lipolytic profile of 101 bacterial strains isolated from the volcanic area of Santorini, Aegean Sea, Greece. Screening of lipase activity was performed both in agar plates and liquid cultures using olive oil as carbon source. Significant differences were observed between the two screening methods with no clear correlation between them. While the percentage of lipase producing strains identified in agar plates was only 17%, lipolytic activity in liquid culture supernatants was detected for 74% of them. Nine strains exhibiting elevated extracellular lipase activities were selected for lipase production and biochemical characterization. The majority of lipase producers revealed high phylogenetic similarity withGeobacillusspecies and related genera, whilst one of them was identified asAneurinibacillussp. Lipase biosynthesis strongly depended on the carbon source that supplemented the culture medium. Olive oil induced lipase production in all strains, but maximum enzyme yields for some of the strains were also obtained with Tween-80, mineral oil, and glycerol. Partially purified lipases revealed optimal activity at 70–80°C and pH 8-9. Extensive thermal stability studies revealed marked thermostability for the majority of the lipases as well as a two-step thermal deactivation pattern.


Sign in / Sign up

Export Citation Format

Share Document