Reduction of bromate in groundwater with an ex situ suspended growth bioreactor

2005 ◽  
Vol 52 (9) ◽  
pp. 265-273 ◽  
Author(s):  
R. Butler ◽  
A.R. Godley ◽  
R. Lake ◽  
L. Lytton ◽  
E. Cartmell

A potential remediation technique for groundwater contaminated by bromate has been investigated, utilising biological bromate reduction to bromide by augmentation of indigenous microbial populations. This technique, involving addition of a carbon source to contaminated groundwater, is being developed as an ex-situ methodology analogous to commercial denitrification systems, but may also havein-situ applications. Trials have focussed on a laboratory-scale anaerobic suspended growth chemostat system, investigating glucose addition to real groundwater supplies. Steady states for a range of glucose and bromate concentrations demonstrated bromate reduction up to 700μgl−1 (50% of 1400μgl−1 influent) with glucose excess (above 52mgl−1), but specific reduction rates (up to 2.83μmol Br.g dry wt−1hr−1 for 1400μgl−1 bromate influent) were low compared to denitrification (up to 305μmol Ng dry wt−1hr−1). More recent enrichment trials have demonstrated reduction of 32mgl−1 bromate within a 40 hour residence time with specific reduction rates of up to 160.48μmol Br.g dry wt−1hr−1, suggesting the presence of high rate bromate reducing bacterial strains.

2000 ◽  
Vol 42 (5-6) ◽  
pp. 371-376 ◽  
Author(s):  
J.A. Puhakka ◽  
K.T. Järvinen ◽  
J.H. Langwaldt ◽  
E.S. Melin ◽  
M.K. Männistö ◽  
...  

This paper reviews ten years of research on on-site and in situ bioremediation of chlorophenol contaminated groundwater. Laboratory experiments on the development of a high-rate, fluidized-bed process resulted in a full-scale, pump-and-treat application which has operated for several years. The system operates at ambient groundwater temperature of 7 to 9°C at 2.7 d hydraulic retention time and chlorophenol removal efficiencies of 98.5 to 99.9%. The microbial ecology studies of the contaminated aquifer revealed a diverse chlorophenol-degrading community. In situ biodegradation of chlorophenols is controlled by oxygen availability, only. Laboratory and pilot-scale experiments showed the potential for in situ aquifer bioremediation with iron oxidation and precipitation as a potential problem.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1672
Author(s):  
Shih-Chieh Hsu ◽  
Tzu-Ten Huang ◽  
Yen-Ju Wu ◽  
Cheng-Zhang Lu ◽  
Huei Chu Weng ◽  
...  

Carbon-coated Li4Ti5O12 (LTO) has been prepared using polyimide (PI) as a carbon source via the thermal imidization of polyamic acid (PAA) followed by a carbonization process. In this study, the PI with different structures based on pyromellitic dianhydride (PMDA), 4,4′-oxydianiline (ODA), and p-phenylenediamine (p-PDA) moieties have been synthesized. The effect of the PI structure on the electrochemical performance of the carbon-coated LTO has been investigated. The results indicate that the molecular arrangement of PI can be improved when the rigid p-PDA units are introduced into the PI backbone. The carbons derived from the p-PDA-based PI show a more regular graphite structure with fewer defects and higher conductivity. As a result, the carbon-coated LTO exhibits a better rate performance with a discharge capacity of 137.5 mAh/g at 20 C, which is almost 1.5 times larger than that of bare LTO (94.4 mAh/g).


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1139
Author(s):  
Donata Overlingė ◽  
Anna Toruńska-Sitarz ◽  
Marta Cegłowska ◽  
Agata Błaszczyk ◽  
Karolina Szubert ◽  
...  

The bioprospecting of marine and brackish water systems has increased during the last decades. In this respect, microalgae, including cyanobacteria, and their metabolites are one of the most widely explored resources. Most of the bioactive compounds are isolated from ex situ cultures of microorganisms; however, analysis of field samples could also supply valuable information about the metabolic and biotechnological potential of microalgae communities. In this work, the activity of phytoplankton samples from the Curonian Lagoon was studied. The samples were active against antibiotic resistant clinical and environmental bacterial strains as well as against serine proteases and T47D human breast adenocarcinoma cells. No significant effect was found on Daphnia magna. In addition, using LC-MS/MS, we documented the diversity of metabolites present in field samples. A list of 117 detected cyanopeptides was presented. Cyanopeptolins constituted the largest class of cyanopeptides. As complex bloom samples were analyzed, no link between the observed activity and a specific sample component can be established. However, the results of the study showed a biotechnological potential of natural products from the Curonian Lagoon.


2021 ◽  
Vol 36 ◽  
pp. 05003
Author(s):  
Nguyen Van Zhang ◽  
Nguyen Thi Thu ◽  
Vu Thi Linh ◽  
V.V. Pylnev ◽  
M.I. Popchenko

This work presents the experimental study results of the influence of the culture medium on the ability to IAA synthesis of three endophytic strains TH10R, TH11T, and TH13T from roots of Ipomoea pes-caprae. Three investigated strains give the highest IAA concentration after 96 h of cultivation. A significant increase in IAA biosynthesis was obtained by cultivating the TH10R strain in a medium containing lactose or starch as a carbon source and NH4Cl or KNO3 as a nitrogen source. The TH11T strain produces the maximum amount of IAA, using glucose or xylose and KNO3 or NH4NO3 as carbon and nitrogen sources, respectively. Sucrose is a suitable carbon source for the TH13T strain; on a sucrose-containing medium, the TH13T strain produces the highest IAA amount. The most active strain is TH10R, identified as Bacillus mycoides and named Bacillus mycoides TH10R.


2021 ◽  
Author(s):  
Anjali Mahilkar ◽  
Phaniendra Alugoju ◽  
Vijendra Kavatalkar ◽  
Rajeshkannan E. ◽  
Jayadeva Bhat ◽  
...  

Adaptive diversification of an isogenic population, and its molecular basis has been a subject of a number of studies in the last few years. Microbial populations offer a relatively convenient model system to study this question. In this context, an isogenic population of bacteria (E. coli, B. subtilis, and Pseudomonas) has been shown to lead to genetic diversification in the population, when propagated for a number of generations. This diversification is known to occur when the individuals in the population have access to two or more resources/environments, which are separated either temporally or spatially. Here, we report adaptive diversification in an isogenic population of yeast, S. cerevisiae, when propagated in an environment containing melibiose as the carbon source. The diversification is driven due to a public good, enzyme α-galactosidase, leading to hydrolysis of melibiose into two distinct resources, glucose and galactose. The diversification is driven by a mutations at a single locus, in the GAL3 gene in the GAL/MEL regulon in the yeast.


Microbiology ◽  
2010 ◽  
Vol 156 (4) ◽  
pp. 1221-1233 ◽  
Author(s):  
Jan Hendrik Wübbeler ◽  
Nadine Bruland ◽  
Milena Wozniczka ◽  
Alexander Steinbüchel

Application of the non-toxic 3,3′-thiodipropionic acid (TDP) and 3,3′-dithiodipropionic acid (DTDP) as precursors for the microbial production of polythioesters (PTEs), a class of biologically persistent biopolymers containing sulphur in the backbone, was successfully established previously. However, synthesis of PTEs containing 4-mercaptobutyrate (4MB) as building blocks could not be achieved. The very harmful 4MB is not used as a PTE precursor or as the carbon source for growth by any known strain. As a promising alternative, the harmless oxidized disulfide of two molecules of 4MB, 4,4′-dithiodibutyric acid (DTDB), was employed for enrichments of bacterial strains capable of biodegradation. Investigation of novel precursor substrates for PTEs and comparison of respective strains growing on TDP, DTDP and DTDB as sole carbon source was accomplished. A broad variety of bacteria capable of using one of these organic sulphur compounds were isolated and compared. TDP and DTDP were degraded by several strains belonging to different genera, whereas all DTDB-utilizing strains were affiliated to the species Rhodococcus erythropolis. Transposon mutagenesis of R. erythropolis strain MI2 and screening of 7500 resulting mutants yielded three mutants exhibiting impaired growth on DTDB. Physiological studies revealed production of volatile hydrogen sulphide and accumulation of significant amounts of 4MB, 4-oxo-4-sulphanylbutanoic acid and succinic acid in the culture supernatants. Based on this knowledge, a putative pathway for degradation of DTDB was proposed: DTDB could be cleaved into two molecules of 4MB, followed by an oxidation yielding 4-oxo-4-sulphanylbutanoic acid. A putative desulphydrase probably catalyses the abstraction of sulphur, thereby generating succinic acid and hydrogen sulphide.


2016 ◽  
Vol 9 (1) ◽  
pp. 62-67 ◽  
Author(s):  
R. Jame ◽  
V. Zelená ◽  
B. Lakatoš ◽  
Ľ. Varečka

Abstract Five bacterial isolates were tested for their ability to generate hydrogen during anaerobic fermentation with various carbon sources. One isolate from sheep rumen was identified as Escherichia coli and four isolates belonged to Clostridium spp. Glucose, arabinose, ribose, xylose, lactose and cellobiose were used as carbon sources. Results showed that all bacterial strains could utilize these compounds, although the utilization of pentoses diminished growth yield. The excretion of monocarboxylic acids (acetate, propionate, formiate, butyrate) into medium was changed after replacing glucose by other carbon sources. Di- and tricarboxylic acids were excreted in negligible amounts only. Spectra of excreted carboxylic acids were unique for each strain and all carbon sources. All isolates produced H2 between 4—9 mmol·L−1 during the stationary phase of growth with glucose as energy source. This value was dramatically reduced when pentoses were used as carbon source. Lactose and cellobiose, starch and cellulose were suitable substrates for the H2 production in some but not all isolates. No H2 was produced by proteinaceous substrate, such as blood. Results show that both substrate utilization and physiological responses (growth, excretion of carboxylates, H2 production) are unique functions of each isolate.


2016 ◽  
Vol 73 (12) ◽  
pp. 2904-2912 ◽  
Author(s):  
D. Güven ◽  
E. Ubay Çokgör ◽  
S. Sözen ◽  
D. Orhon

Abstract High rate membrane bioreactor (MBR) systems operated at extremely low sludge ages (superfast membrane bioreactors (SFMBRs)) are inefficient to achieve nitrogen removal, due to insufficient retention time for nitrifiers. Moreover, frequent chemical cleaning is required due to high biomass flux. This study aims to satisfy the nitrification in SFMBRs by using sponge as carriers, leading to the extension of the residence time of microorganisms. In order to test the limits of nitrification, bioreactor was run under 52, 5 and 2 days of carrier residence time (CRT), with a hydraulic retention time of 6 h. Different degrees of nitrification were obtained for different CRTs. Sponge immobilized SFMBR operation with short CRT resulted in partial nitrification indicating selective dominancy of ammonia oxidizers. At higher CRT, simultaneous nitrification–denitrification was achieved when accompanying with oxygen limitation. Process kinetics was determined through evaluation of the results by a modeling study. Nitrifier partition in the reactor was also identified by model calibration.


2016 ◽  
Vol 27 (1) ◽  
pp. 44-47 ◽  
Author(s):  
Mihaela Carmen Eremia ◽  
Irina Lupescu ◽  
Mariana Vladu ◽  
Maria Petrescu ◽  
Gabriela Savoiu ◽  
...  

Abstract Polyhydroxyalcanoates (PHAs) are specifically produced by a wide variety of bacteria, as an intracellular energy reserve in the form of homo- and copolymers of [R]-β-hydroxyalkanoic acids, depending on the C source used for microorganism growth, when the cells are grown under stressing conditions. In this paper we present microbiological accumulation of poly-3-hydroxyoctanoate (PHO) by using a consortium of bacterial strains, Pseudomonas putida and Bacillus subtilis, in a rate of 3:1, grown on a fermentation medium based on sodium octanoate as the sole carbon source. The experiments performed in the above mentioned conditions led to the following results: from 18.70 g sodium octanoate (7.72 g/L in the fermentation medium) used up during the bioprocess, 3.93-3.96 g/L dry bacterial biomass and 1.834 - 1.884 g/L PHA, containing 85.83 - 86.8% PHO, were obtained.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruijuan Shi ◽  
Luojia Liu ◽  
Yong Lu ◽  
Chenchen Wang ◽  
Yixin Li ◽  
...  

AbstractCovalent organic frameworks with designable periodic skeletons and ordered nanopores have attracted increasing attention as promising cathode materials for rechargeable batteries. However, the reported cathodes are plagued by limited capacity and unsatisfying rate performance. Here we report a honeycomb-like nitrogen-rich covalent organic framework with multiple carbonyls. The sodium storage ability of pyrazines and carbonyls and the up-to twelve sodium-ion redox chemistry mechanism for each repetitive unit have been demonstrated by in/ex-situ Fourier transform infrared spectra and density functional theory calculations. The insoluble electrode exhibits a remarkably high specific capacity of 452.0 mAh g−1, excellent cycling stability (~96% capacity retention after 1000 cycles) and high rate performance (134.3 mAh g−1 at 10.0 A g−1). Furthermore, a pouch-type battery is assembled, displaying the gravimetric and volumetric energy density of 101.1 Wh kg−1cell and 78.5 Wh L−1cell, respectively, indicating potentially practical applications of conjugated polymers in rechargeable batteries.


Sign in / Sign up

Export Citation Format

Share Document