Changes in cell phenotype during regeneration of junctional epithelium of human gingiva in vitro

1989 ◽  
Vol 24 (6) ◽  
pp. 370-377 ◽  
Author(s):  
Jukka I. Salonen ◽  
Mikael B. Kautsky ◽  
Beverly A. Dale
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David M. Favara ◽  
Ines Liebscher ◽  
Ali Jazayeri ◽  
Madhulika Nambiar ◽  
Helen Sheldon ◽  
...  

AbstractADGRL4/ELTD1 is an orphan adhesion GPCR (aGPCR) expressed in endothelial cells that regulates tumour angiogenesis. The majority of aGPCRs are orphan receptors. The Stachel Hypothesis proposes a mechanism for aGPCR activation, in which aGPCRs contain a tethered agonist (termed Stachel) C-terminal to the GPCR-proteolytic site (GPS) cleavage point which, when exposed, initiates canonical GPCR signalling. This has been shown in a growing number of aGPCRs. We tested this hypothesis on ADGRL4/ELTD1 by designing full length (FL) and C-terminal fragment (CTF) ADGRL4/ELTD1 constructs, and a range of potential Stachel peptides. Constructs were transfected into HEK293T cells and HTRF FRET, luciferase-reporter and Alphascreen GPCR signalling assays were performed. A stable ADGRL4/ELTD1 overexpressing HUVEC line was additionally generated and angiogenesis assays, signalling assays and transcriptional profiling were performed. ADGRL4/ELTD1 has the lowest GC content in the aGPCR family and codon optimisation significantly increased its expression. FL and CTF ADGRL4/ELTD1 constructs, as well as Stachel peptides, did not activate canonical GPCR signalling. Furthermore, stable overexpression of ADGRL4/ELTD1 in HUVECs induced sprouting angiogenesis, lowered in vitro anastomoses, and decreased proliferation, without activating canonical GPCR signalling or MAPK/ERK, PI3K/AKT, JNK, JAK/HIF-1α, beta catenin or STAT3 pathways. Overexpression upregulated ANTXR1, SLC39A6, HBB, CHRNA, ELMOD1, JAG1 and downregulated DLL4, KIT, CCL15, CYP26B1. ADGRL4/ELTD1 specifically regulates the endothelial tip-cell phenotype through yet undefined signalling pathways.


2011 ◽  
Vol 301 (2) ◽  
pp. C522-C529 ◽  
Author(s):  
Justine Elliott ◽  
Nadezhda N. Zheleznova ◽  
Patricia D. Wilson

c-Src is a non-receptor tyrosine kinase whose activity is induced by phosphorylation at Y418 and translocation from the cytoplasm to the cell membrane. Increased activity of c-Src has been associated with cell proliferation, matrix adhesion, motility, and apoptosis in tumors. Immunohistochemistry suggested that activated (pY418)-Src activity is increased in cyst-lining autosomal dominant polycystic kidney disease (ADPKD) epithelial cells in human and mouse ADPKD. Western blot analysis showed that SKI-606 (Wyeth) is a specific inhibitor of pY418-Src without demonstrable effects on epidermal growth factor receptor or ErbB2 activity in renal epithelia. In vitro studies on mouse inner medullary collecting duct (mIMCD) cells and human ADPKD cyst-lining epithelial cells showed that SKI-606 inhibited epithelial cell proliferation over a 24-h time frame. In addition, SKI-606 treatment caused a striking statistically significant decrease in adhesion of mIMCD and human ADPKD to extracellular collagen matrix. Retained viability of unattached cells was consistent with a primary effect on epithelial cell anchorage dependence mediated by the loss of extracellular matrix (ECM)-attachment due to α2β1-integrin function. SKI-606-mediated attenuation of the human ADPKD hyperproliferative and hyper-ECM-adhesive epithelial cell phenotype in vitro was paralleled by retardation of the renal cystic phenotype of Pkd1 orthologous ADPKD heterozygous mice in vivo. This suggests that SKI-606 has dual effects on cystic epithelial cell proliferation and ECM adhesion and may have therapeutic potential for ADPKD patients.


2012 ◽  
Vol 706-709 ◽  
pp. 584-588
Author(s):  
Lia Rimondini ◽  
Federica Demarosi ◽  
Ismaela Foltran ◽  
Nadia Quirici

Electrospinning technique is an efficient processing method to manufacture micro-and nanosized fibrous structures by electrostatic force for different applications. In biomaterial field, electrospinning technique has been successfully utilized to prepare new drug delivery materials and tissue engineering scaffolds. Fiber mats of biodegradable polymers having a diameter in the nanoto submicro-scale can be considered to mimic the nanofibrous structure of native extracellular matrix (ECM). Native extracellular matrix, constituted of proteins and polysaccharides improving cells growth in its nanofibrous porous structure, controls not only the cell phenotype, but the whole structure of the biological tissues. In the present study we investigated the effect of electrospun reconstituted collagen fibers onto metals for oral implants devices manufacturing as far as the osteoblastic differentiation potential of stem cells and cytofunctionality of osteoblasts in-vitro. The cells cultured onto titanium samples coated with ECM constituents showed faster osteoblastic differentiation and more efficient deposition of mineralized matrix in comparison with those onto uncoated substrates.


1999 ◽  
Vol 123 (10) ◽  
pp. 949-951
Author(s):  
Carol S. Marshall ◽  
Denis Dwyre ◽  
Robin Eckert ◽  
Liisa Russell

Abstract A 35-year-old gravida 3, para 3 Filipino woman with a negative antibody screen, no prior history of transfusion, and no hemolytic disease of the newborn in her children suffered a massive postpartum hemorrhage requiring transfusion. A severe hemolytic transfusion reaction occurred 5 days after delivery. Subsequently, a panagglutinin on a routine antibody identification panel was identified as anti-Jk3. The patient's red blood cell phenotype was Jk(a−b−) and all of her children were Jk(a−b+), yet the antibody that formed reacted with equal strength against all Jka- or Jkb-positive cells. The rare Jk(a−b−) phenotype is more common in Polynesians. Anti-Jk3, like other Kidd system antibodies, is difficult to detect because in vivo production may be absent between provocative episodes and because these antibodies often show weak in vitro reactions. The increasing numbers of Pacific Islanders in the United States could result in more frequent encounters with this rare phenotype. Increased awareness of ethnic variability in blood phenotypes and of the capricious nature of Kidd antibodies can help pathologists and technologists deal more effectively with these cases.


2017 ◽  
Vol 97 (2) ◽  
pp. 201-208 ◽  
Author(s):  
J.K. Buskermolen ◽  
M.M. Janus ◽  
S. Roffel ◽  
B.P. Krom ◽  
S. Gibbs

In vitro models that closely mimic human host-microbiome interactions can be a powerful screening tool for antimicrobials and will hold great potential for drug validation and discovery. The aim of this study was to develop an organotypic oral mucosa model that could be exposed to in vitro cultured commensal and pathogenic biofilms in a standardized and scalable manner. The oral mucosa model consisted of a tissue-engineered human gingiva equivalent containing a multilayered differentiated gingiva epithelium (keratinocytes) grown on a collagen hydrogel, containing gingiva fibroblasts, which represented the lamina propria. Keratinocyte and fibroblast telomerase reverse transcriptase–immortalized cell lines were used to overcome the limitations of isolating cells from small biopsies when scalable culture experiments were required. The oral biofilms were grown under defined conditions from human saliva to represent 3 distinct phenotypes: commensal, gingivitis, and cariogenic. The in vitro grown biofilms contained physiologic numbers of bacterial species, averaging >70 operational taxonomic units, including 20 differentiating operational taxonomic units. When the biofilms were applied topically to the gingiva equivalents for 24 h, the gingiva epithelium increased its expression of elafin, a protease inhibitor and antimicrobial protein. This increased elafin expression was observed as a response to all 3 biofilm types, commensal as well as pathogenic (gingivitis and cariogenic). Biofilm exposure also increased secretion of the antimicrobial cytokine CCL20 and inflammatory cytokines IL-6, CXCL8, and CCL2 from gingiva equivalents. This inflammatory response was far greater after commensal biofilm exposure than after pathogenic biofilm exposure. These results show that pathogenic oral biofilms have early immune evasion properties as compared with commensal oral biofilms. The novel host-microbiome model provides an ideal tool for future investigations of gingiva responses to commensal and pathogenic biofilms and for testing novel therapeutics.


2020 ◽  
Vol 2020 ◽  
pp. 1-4 ◽  
Author(s):  
Sebo Gene Wang ◽  
Nicholas C. Hsu ◽  
Sebo Michelle Wang ◽  
Fu Nan Wang

Plaque psoriasis is the most common type of psoriasis that manifests as red scaly patches with white scales affecting body areas including scalp, elbows, knees, trunk, and buttocks. Although many treatment options are available including novel biologics, no cure is available. Mesenchymal stem cells (MSCs) have been safely used to treat a variety of human diseases. Allogeneic MSCs possess unique characteristics including hypoimmunogenicity, immunomodulatory, and anti-inflammatory properties, and they are currently being explored for potential therapeutic use for many systemic inflammatory diseases. The human gingival tissue is an easily accessible and obtainable source for the isolation of MSCs. MSCs from adult human gingiva are of fetal-like phenotype, multipotent, and easy to isolate and expand in vitro. Herein, we report a case of a 19-year-old man with a 5-year history of severe plaque psoriasis refractory to multiple topical and systemic therapies who was treated with allogeneic human gingival MSCs. Complete regression was achieved after 5 infusions with no adverse reaction occurred. The patient has been followed for three years and has remained disease free.


Sign in / Sign up

Export Citation Format

Share Document