Extracts of Prevotella intermedia and Actinobacillus actinomycetemcomitans inhibit alkaline phosphatase activity in osteoblastic cells in vitro

Oral Diseases ◽  
2008 ◽  
Vol 3 (2) ◽  
pp. 106-112 ◽  
Author(s):  
T. Murata ◽  
T. Ansai ◽  
T. Takehara ◽  
S. Kobayashi ◽  
T. Haneji
Author(s):  
Kari Hanson ◽  
Carly Isder ◽  
Kristen Shogren ◽  
Anthony L. Mikula ◽  
Lichun Lu ◽  
...  

OBJECTIVE The use of intrawound vancomycin powder in spine surgery has been shown to decrease the rate of surgical site infections; however, the optimal dose is unknown. High-dose vancomycin inhibits osteoblast proliferation in vitro and may decrease the rate of solid arthrodesis. Bone marrow–derived mesenchymal stem cells (BMSCs) are multipotent cells that are a source of osteogenesis in spine fusions. The purpose of this study was to determine the effects of vancomycin on rat BMSC viability and differentiation in vitro. METHODS BMSCs were isolated from the femurs of immature female rats, cultured, and then split into two equal groups; half were treated to stimulate osteoblastic differentiation and half were not. Osteogenesis was stimulated by the addition of 50 µg/mL l-ascorbic acid, 10 mM β-glycerol phosphate, and 0.1 µM dexamethasone. Vancomycin was added to cell culture medium at concentrations of 0, 0.04, 0.4, or 4 mg/mL. Early differentiation was determined by alkaline phosphatase activity (4 days posttreatment) and late differentiation by alizarin red staining for mineralization (9 days posttreatment). Cell viability was determined at both the early and late time points by measurement of formazan colorimetric product. RESULTS Viability within the first 4 days decreased with high-dose vancomycin treatment, with cells receiving 4 mg/mL vancomycin having 40%–60% viability compared to the control. A gradual decrease in alizarin red staining and nodule formation was observed with increasing vancomycin doses. In the presence of the osteogenic factors, vancomycin did not have deleterious effects on alkaline phosphatase activity, whereas a trend toward reduced activity was seen in the absence of osteogenic factors when compared to osteogenically treated cells. CONCLUSIONS Vancomycin reduced BMSC viability and impaired late osteogenic differentiation with high-dose treatment. Therefore, the inhibitory effects of high-dose vancomycin on spinal fusion may result from both reduced BMSC viability and some impairment of osteogenic differentiation.


RSC Advances ◽  
2015 ◽  
Vol 5 (99) ◽  
pp. 81378-81387 ◽  
Author(s):  
Ting Ma ◽  
Xi-Yuan Ge ◽  
Sheng-Nan Jia ◽  
Xi Jiang ◽  
Yu Zhang ◽  
...  

The effect of alkali-treated titanium surfaces on inflammation-related gene expression of macrophages and alkaline phosphatase activity of osteoblast-like cells.


1992 ◽  
Vol 262 (3) ◽  
pp. F442-F448 ◽  
Author(s):  
N. S. Krieger ◽  
N. E. Sessler ◽  
D. A. Bushinsky

Metabolic acidosis induces net calcium flux (JCa) from cultured neonatal mouse calvariae through physicochemical and cell-mediated mechanisms. To determine the role of osteoblasts in acid-induced JCa, collagen synthesis and alkaline phosphatase activity were assessed in calvariae incubated in reduced pH and bicarbonate medium, a model of metabolic acidosis (Met), and compared with controls (Ctl). Collagen synthesis fell from 30.5 +/- 1.1 in Ctl to 25.1 +/- 0.4% with Met, and alkaline phosphatase decreased from 403 +/- 25 in Ctl to 298 +/- 21 nmol Pi.min-1.mg protein-1 with Met. During acidosis JCa was correlated inversely with percent collagen synthesis (r = -0.743, n = 11, P = 0.009) and with alkaline phosphatase activity (r = -0.453, n = 22, P = 0.034). To determine the role of osteoclasts in acid-induced JCa, osteoclastic beta-glucuronidase activity was determined in Ctl and Met in the absence or presence of the osteoclastic inhibitor calcitonin (CT, 3 x 10(-9) M). Met increased beta-glucuronidase (5.9 +/- 0.2) compared with Ctl (4.6 +/- 0.3 micrograms phenolphthalein released.bone-1.h-1), whereas CT inhibited beta-glucuronidase in both Ctl and Met (3.1 +/- 0.2 and 3.5 +/- 0.3, respectively). During acidosis JCa was correlated directly with beta-glucuronidase activity (r = 0.683, n = 42, P less than 0.001). Thus the cell-mediated component of JCa during acidosis in vitro appears to result from a combination of inhibited osteoblastic and stimulated osteoclastic activity.


2007 ◽  
Vol 12 (2) ◽  
pp. 307-312 ◽  
Author(s):  
Maria Helena Santos ◽  
Ana Paula M. Shaimberg ◽  
Patricia Valerio ◽  
Alfredo M. Goes ◽  
Maria de Fátima Leite ◽  
...  

The cytocompatibility of synthetic hydroxyapatite/collagen composites alone or doped with Zn+2 was tested by using primary culture of osteoblasts. The hydroxyapatite (HAP) was synthesized having calcium hydroxide and orthophosphoric acid as precursors. A new HAP composite was developed adding 1.05 w% of Zn(NO3)2.6H2O forming HAPZn. The pure type I collagen (COL) was obtained from bovine pericardium by enzymatic digestion method. The HAP/COL and HAPZn/COL composites were developed and characterized by SEM/EDS. The cell viability and alkaline phosphatase activity in the presence of composites were evaluated by MTT assay and NBT-BCIP assay, respectively, and compared to osteoblastic cells of the control. Three individual experiments were accomplished in triplicates and submitted to the variance analysis and Bonferroni’s post-test with statistically significant at p<0.05. The HAPZn/COL composite did not stimulate the proliferation and increasing of alkaline phosphatase activity of the osteoblastic cells. The tested composites did not alter the cellular viability neither caused alterations in the cellular morphology in 72 h showing adequate properties for biological applications.


Blood ◽  
1965 ◽  
Vol 25 (3) ◽  
pp. 356-369 ◽  
Author(s):  
FRED ROSNER ◽  
STANLEY L. LEE

Abstract Leukocyte alkaline phosphatase activity has been noted to be different in men and women. The mean leukocyte alkaline phosphatase activity for 74 normal men, aged 19 to 60 years, was 23 mg. of phosphorus per 1010 polvmorphonuclear leukocytes per hour. The corresponding mean value for 75 normal young women, age 19-48 years, was 35 (p < .001). No significant differences between boys and girls occurred until the time of puberty. After the menopause, the values for women approached the values for men. Women treated with androgens had lower leukocyte alkaline phosphatase activity than did control women. These results suggest that androgenic hormones inhibit this enzyme, and that other, as yet undefined endocrine influences, also affect its level of activity. In vitro tests with various concentrations of androgens and estrogens failed to provide conclusive evidence of direct effect on leukocytes although some degree of direct inhibition by androgens was suggested. Studies using saponin to effect enzyme release from leukocyte granules did not demonstrate whether the differences between men and women are differences of enzyme release or of content of leukocyte alkaline phosphatase.


Sign in / Sign up

Export Citation Format

Share Document