The inhibitory effects of vancomycin on rat bone marrow–derived mesenchymal stem cell differentiation

Author(s):  
Kari Hanson ◽  
Carly Isder ◽  
Kristen Shogren ◽  
Anthony L. Mikula ◽  
Lichun Lu ◽  
...  

OBJECTIVE The use of intrawound vancomycin powder in spine surgery has been shown to decrease the rate of surgical site infections; however, the optimal dose is unknown. High-dose vancomycin inhibits osteoblast proliferation in vitro and may decrease the rate of solid arthrodesis. Bone marrow–derived mesenchymal stem cells (BMSCs) are multipotent cells that are a source of osteogenesis in spine fusions. The purpose of this study was to determine the effects of vancomycin on rat BMSC viability and differentiation in vitro. METHODS BMSCs were isolated from the femurs of immature female rats, cultured, and then split into two equal groups; half were treated to stimulate osteoblastic differentiation and half were not. Osteogenesis was stimulated by the addition of 50 µg/mL l-ascorbic acid, 10 mM β-glycerol phosphate, and 0.1 µM dexamethasone. Vancomycin was added to cell culture medium at concentrations of 0, 0.04, 0.4, or 4 mg/mL. Early differentiation was determined by alkaline phosphatase activity (4 days posttreatment) and late differentiation by alizarin red staining for mineralization (9 days posttreatment). Cell viability was determined at both the early and late time points by measurement of formazan colorimetric product. RESULTS Viability within the first 4 days decreased with high-dose vancomycin treatment, with cells receiving 4 mg/mL vancomycin having 40%–60% viability compared to the control. A gradual decrease in alizarin red staining and nodule formation was observed with increasing vancomycin doses. In the presence of the osteogenic factors, vancomycin did not have deleterious effects on alkaline phosphatase activity, whereas a trend toward reduced activity was seen in the absence of osteogenic factors when compared to osteogenically treated cells. CONCLUSIONS Vancomycin reduced BMSC viability and impaired late osteogenic differentiation with high-dose treatment. Therefore, the inhibitory effects of high-dose vancomycin on spinal fusion may result from both reduced BMSC viability and some impairment of osteogenic differentiation.

Medicina ◽  
2021 ◽  
Vol 57 (1) ◽  
pp. 38
Author(s):  
Hyunjin Lee ◽  
Youngmin Song ◽  
Yoon-Hee Park ◽  
Md. Salah Uddin ◽  
Jun-Beom Park

Background and Objectives: Cuminum cyminum L. has long been used in the treatment of various diseases in multiple geographical regions. This study was performed to determine the effects of C. cyminum methanolic extract (CCT) on the cellular viability, alkaline phosphatase activity and mineralization of human mesenchymal stem cells. Materials and Methods: Bone marrow-derived stem cells were cultured in the presence of CCT at concentrations of 0, 0.001, 0.01, 0.1 and 1 μg/mL. Evaluations of cell morphology were performed on days 1, 3, 7 and 14. Cellular viability was evaluated on days 1, 3, 5 and 7. On the 7th and 14th day, alkaline phosphatase activity measurements and Alizarin red S staining were conducted to assess the osteogenic differentiation of stem cells. A real-time polymerase chain reaction was used to determine the expression levels of RUNX2, BSP, OCN, COL2A1 and β-catenin mRNAs. Results: Stem cells in the control group showed fibroblast-like morphology and the addition of CCT at 0.001, 0.01, 0.1 and 1 μg/mL did not generate noticeable changes in morphology compared with the untreated control group. The application of CCT did not produce significant changes in cellular viability or alkaline phosphatase activity compared with controls. Alizarin Red S staining was significantly increased with the application of CCT. Treatment with CCT increased the expressions of RUNX2, BSP and OCN. Conclusions: These results indicate that CCT enhanced the osteogenic differentiation of stem cells derived from bone marrow by regulating the expressions of RUNX2, BSP and OCN. Thus, the use of CCT may be applied to achieve beneficial effects on the mineralization of stem cells.


2008 ◽  
Vol 20 (1) ◽  
pp. 223
Author(s):  
A. Lima ◽  
E. Monaco ◽  
S. Wilson ◽  
D. Kim ◽  
C. Feltrin ◽  
...  

The quantity and accessibility of subcutaneous adipose tissue in humans make it an attractive alternative to bone marrow as a source of adult stem cells for therapeutic purposes. However, before such a cell source substitution can be proposed, the properties of stem cells derived from adipose (ADSCs) and bone marrow (MSCs) and their differentiated progeny must be compared in an animal model that adequately simulates the structure and physiology of humans. The objective of this work was to induce adult porcine stem cells isolated from subcutaneous adipose tissue and bone marrow to differentiate in vitro along the osteoblastic lineage and to compare their morphological, phenotypic, and genotypic properties. MSCs and ADSCs were isolated respectively from femurs and subcutaneous adipose tissue of adult pigs and cultured in vitro using DMEM supplemented with 10% fetal bovine serum (FBS), 1% penicillin G-streptomycin, and 5.6 mg L–1 amphotericin B. After 3 passages, cells were differentiated along the osteogenic lineage using lineage-specific inducing medium. Osteogenic medium contained 100 nm dexamethasone, 10 mm β-glycerophosphate, and 0.005 mm ascorbic acid-2-phosphate. Osteogenic cultures were incubated for 4 weeks in 95% air and 5% CO2 at 39�C. Spent medium was replaced with fresh medium every 3 days. Histological staining with alkaline phosphatase, Von Kossa, and alizarin red S were performed at 0, 2, 4, 7, 14, 21, and 28 days of differentiation (dd). At the same time points, RNA was extracted. qPCR was performed on COL1A1, BGLAP, SPARC, and SPP1. As internal control, the geometrical mean of GTF2H, NUBP, and PPP2C was used. Relative mRNA abundance between cell types was calculated using 1/efficiencydCT. The osteogenic differentiation of both MSCs and ADScs was confirmed by the organization of the cells in nodules and by alkaline phosphatase-, Von Kossa-, and alizarin red S-positive staining. The percent relative abundance of the 4 genes in both cell types was COL1A1 (ca. 50) > SPARC (ca. 45) > SPP1 (ca. 5) > BGLAP ( < 0.1). Cell types showed similar mRNA abundance for COL1A1 and SPARC while SPP1 and BGLAP were, respectively, 10- and 19-fold higher in MSCs than in ADSCs. All of the genes had the same pattern among tissues during differentiation except for SPP1, which showed a >10-fold increase at 14 v. 0 dd only for MSCs. Adipose-derived stem cells demonstrated a clear osteogenic differentiation and similar expression and pattern of the two osteogenic genes most abundant in MSCs (COL1A1 and SPARC). However, the higher abundance of SPP1 and BGLAP and the different behavior of SPP1 in MSCs suggest a different transcription profile between the two cell types. From these preliminary results, adipose tissue can be a practical alternative source for stem cells in future human clinical applications.


1987 ◽  
Vol 87 (5) ◽  
pp. 731-738 ◽  
Author(s):  
M.E. Owen ◽  
J. Cave ◽  
C.J. Joyner

Fibroblastic colonies, each of which is derived from a single precursor cell (CFU-F), are formed when suspensions of marrow cells are cultured in vitro. The ability of marrow CFU-F to differentiate in vitro was investigated using the expression of alkaline phosphatase activity as a marker for osteogenic differentiation. In cultures of rabbit marrow cells the colonies formed varied in size, morphology and expression of enzyme activity, indicating that marrow stromal CFU-F are a heterogeneous population. Growth and differentiation of marrow CFU-F can be modified in vitro. Epidermal growth factor increased average colony size and reduced clonal expression of alkaline phosphatase activity to very low levels. Hydrocortisone activated the osteogenic differentiation programme within the cellular progeny of a wide spectrum of CFU-F. The results support the possible development of in vitro clonal methods for the study of differentiation and regulation of the osteogenic and other fibroblastic cell lines of the marrow stromal system.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 827
Author(s):  
Chao Guo ◽  
Dongyang Niu ◽  
Jia Liu ◽  
Xiaogang Bao ◽  
Guohua Xu

The aim of this study was to evaluate the biological activity, safety, and effectiveness of poly(lactic acid)–poly(glycolic acid)–poly(ethylene glycol)–calcium phosphate cement (PLGA-PEG-PLGA/CPC). Methods: The PLGA-PEG-PLGA/CPC composite bone cement was used for interaction with MC3T3-E1 mouse osteoblasts in vitro and its compatibility was tested using Cell Counting Kit-8 (CCK-8). Alizarin Red staining and alkaline phosphatase activity were used to detect the osteogenic properties. Twenty healthy female New Zealand rabbits were selected to establish osteoporosis models, which were randomly divided into two groups. The experimental group was treated with 30 wt.% PLGA-PEG-PLGA/CPC, while the control group was treated with polymethyl methacrylate (PMMA) bone cement. Imaging and histomorphology of the vertebral body were analyzed after 12 weeks. The distribution and degradation of bone cement were assessed using micro-computed tomography examination and hematoxylin–eosin (HE) staining. Results: In vitro, CCK-8 revealed significant proliferation of osteoblasts in the PLGA-PEG-PLGA/CPC composite bone cement. Alizarin Red staining showed that the degree of staining increased with time. Quantitative results showed that absorbance was significantly higher in this group than in the CPC group on days 7 and 14. The alkaline phosphatase activity levels on days 7 and 14 were significantly higher in the 30 wt.% PLGA-PEG-PLGA/CPC group than in the CPC group. In vivo, postoperative micro-computed tomography and histomorphology showed that the material was evenly distributed in the vertebral body and a small amount penetrated into the trabecular bone. After 12 weeks, CPC degradation and absorption and the formation of new bone matrix were observed and the formation of a callus was obvious. Conclusion: PLGA-PEG-PLGA/CPC composite bone cement has a positive effect on the treatment of osteoporosis.


RSC Advances ◽  
2015 ◽  
Vol 5 (99) ◽  
pp. 81378-81387 ◽  
Author(s):  
Ting Ma ◽  
Xi-Yuan Ge ◽  
Sheng-Nan Jia ◽  
Xi Jiang ◽  
Yu Zhang ◽  
...  

The effect of alkali-treated titanium surfaces on inflammation-related gene expression of macrophages and alkaline phosphatase activity of osteoblast-like cells.


Sign in / Sign up

Export Citation Format

Share Document