EFFECTS of STERILIZING DOSES of GAMMA IRRADIATION ON LEVELS of VITAMIN A, AMINO ACIDS, and FATTY ACIDS IN SELECTED DAIRY PRODUCTS

1993 ◽  
Vol 17 (6) ◽  
pp. 421-436 ◽  
Author(s):  
CYNTHIA J. LEE ◽  
BARBARA A. RASCO ◽  
FAYE M. DONG
2020 ◽  
Vol 12 (16) ◽  
pp. 6616 ◽  
Author(s):  
Zsolt Becskei ◽  
Mila Savić ◽  
Dragan Ćirković ◽  
Mladen Rašeta ◽  
Nikola Puvača ◽  
...  

Water buffalo (Bubalus bubalis) conservation in Serbia is under an in situ program, but additional efforts are needed to ensure the development of this animal’s genetic resources biodiversity. This research aims to describe challenges and possible strategies for sustainable water buffalo milk production. In this study, the physicochemical characteristics of buffalo milk and buffalo dairy products (cheese, butter, and kajmak) were determined. Furthermore, amino and fatty acids composition and the related health lipid indices (atherogenic and thrombogenic) were assessed. The findings support the fact that buffalo milk is a reliable source of high-quality nutrients (dry matter: 16.10%, fat: 6.02%, protein: 4.61%). Leucine, lysine, and valine content were found to be high in buffalo milk and cheese. A substantial quantity of non-essential glutamic and aspartic amino acids was observed in milk, as well as glutamic acid and tyrosine in cheese. It was established that milk protein of buffalo cheese had a favorable proportion of essential and non-essential amino acids (61.76%/38.24%). The results revealed significant differences (p < 0.05) in fatty acid profiles among the three dairy products for saturated short-chain, n-3, and n-6 fatty acids. Conversely, no significant difference (p < 0.05) was observed in monounsaturated fatty acids content. Kajmak showed the most favorable anti-atherogenic and anti-thrombogenic properties due to lower saturated and higher polyunsaturated fatty acid content. These results confirmed that buffalo milk could be successfully used in producing high-quality traditional dairy products with added value and beneficial characteristics from the aspect of a healthy diet. Furthermore, it could actively contribute to the promotion of sustainable production of buffaloes and strengthen the agricultural production of rural areas and their heritage.


2004 ◽  
Vol 2 (2) ◽  
pp. 45-52 ◽  
Author(s):  
TRI HANDAYANI ◽  
SUTARNO SUTARNO ◽  
AHMAD DWI SETYAWAN

The aims of the research were to find out nutritional composition of seaweed Sargassum crassifolium J. Agardh i. e. concentration of protein, amino acids, mineral (ash), mineral elements (Ca, Fe, and P), vitamin C, vitamin A, lipid, fatty acids and alginates. S. crassifolium is a species of brown seaweed that is consumed as source of food, however, it have not optimally used due to the nutritional composition information does not complete yet. The measurement of protein concentration was done according to Lowry method, while amino acids concentration was measured using High Performance Liquid Chromatography (HPLC). Mineral (ash) was measured by dry ash processing, and mineral elements of Ca, Fe, and P were measured using atomic absorption spectrophotometer (AAS) and UV-Vis spectrophotometer. Vitamin C concentration was measured by titration method, while vitamin A was measured using UV-Vis spectrophotometer. Lipid was measured by extraction method using soxhlet, fatty acids by fatty acids methyl esters (FAMEs) method, and alginates were measured by extraction method. The results indicate that the thallus of S. crassifolium contain protein in the average of 5.19% (w/w), and 17 amino acids (in Î¼mol amino acid/g wet weight) varies from 13.77 of glutamic acid to 0.83 for hydroxilicine concentration. Mineral/ash content was 36.93% (w/w), Ca: 1540.66 mg/100 g, Fe: 132.65 mg/100 g, P: 474.03 mg/100 g, vitamin C: 49.01 mg/100 g, vitamin A: 489.11 μg RE/100 g, lipid: 1.63% (w/w), fatty acids concentrations were: 1.45%, 3.53%, 29.49%, 4.10%, 13.78%, 33.58%, 5.94% for lauric acid, meristic acid, palmitic acid, palmitoleic acid, oleic acid, linoleic acid, and linolenic acid subsequently. The concentration of alginates was 37.91% (w/w).


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1771 ◽  
Author(s):  
Hanna Górska-Warsewicz ◽  
Krystyna Rejman ◽  
Wacław Laskowski ◽  
Maksymilian Czeczotko

The main aim of this study was to identify the dairy sources of energy and 44 nutrients in the average Polish diet. Our research included: carbohydrates, protein, total fat, saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), cholesterol, 18 amino acids, 9 minerals, and 10 vitamins. The analysis was conducted based on the data from the 2016 Household Budget Survey, a representative sample of the Polish population (i.e., 36,886 households). The category of milk and dairy products was divided into three main groups (i.e., milk, cheeses, and yoghurts, milk drinks and other dairy products) and seven sub-groups (i.e., whole milk, reduced fat milk, condensed and powdered milk, ripened and melted cheese, cottage cheese, yoghurts, milk drinks and other dairy products). Milk and dairy products provided 9.1% of the total energy supply. A high share (above 20%) in the supply of nutrients was noted in the case of calcium (54.7%), riboflavin (28.1%), vitamin B12 (26.1%), and phosphorus (24.6%). Supply at the level of 10–20% was observed for protein, SFA, zinc, total fat, cholesterol, potassium, magnesium, and vitamin A. Of the amino acids, the share above 20% from dairy category was recorded in the case of 6 amino acids (proline, tyrosine, serine, lysine, valine, and leucine) and at the level of 10–20% for 10 amino acids (isoleucine, histidine, threonine, tryptophan, phenylalanine, methionine, glutamic acid, aspartic acid, alanine, and arginine).


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1010-P
Author(s):  
VICTORIA E. PARKER ◽  
DARREN ROBERTSON ◽  
TAO WANG ◽  
DAVID C. HORNIGOLD ◽  
MAXIMILIAN G. POSCH ◽  
...  

2020 ◽  
Vol 21 (8) ◽  
pp. 785-798 ◽  
Author(s):  
Abedin Abdallah ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
Zewei Sun

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.


1952 ◽  
Vol 197 (1) ◽  
pp. 365-370
Author(s):  
Arthur L. Black ◽  
Max. Kleiber ◽  
Arthur H. Smith
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document