scholarly journals Increased oxidative stress and oxidative damage associated with chronic bacterial prostatitis

2006 ◽  
Vol 8 (3) ◽  
pp. 317-323 ◽  
Author(s):  
Jun-Fu Zhou ◽  
Wei-Qiang Xiao ◽  
Yi-Chun Zheng ◽  
Jie Dong ◽  
Shu-Mei Zhang
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shen Li ◽  
Yongzhang Li ◽  
Xiaozhe Su ◽  
Aiyun Han ◽  
Yang Cui ◽  
...  

Although bone marrow mesenchymal stem cells (BMMSCs) are effective in treating chronic bacterial prostatitis (CBP), the homing of BMMSCs seems to require ultrasound induction. Dihydroartemisinin (DHA) is an important derivative of artemisinin (ART) and has been previously reported to alleviate inflammation and autoimmune diseases. But the effect of DHA on chronic prostatitis (CP) is still unclear. This study aims to clarify the efficacy and mechanism of DHA in the treatment of CBP and its effect on the accumulation of BMMSCs. The experimental CBP was produced in C57BL/6 male mice via intraurethrally administered E. coli solution. Results showed that DHA treatment concentration-dependently promoted the accumulation of BMMSCs in prostate tissue of CBP mice. In addition, DHA and BMMSCs cotreatment significantly alleviated inflammation and improved prostate damage by decreasing the expression of proinflammatory factors such as TNF-α, IL-1β, and chemokines CXCL2, CXCL9, CXCL10, and CXCL11 in prostate tissue of CBP mice. Moreover, DHA and BMMSCs cotreatment displayed antioxidation property by increasing the production of glutathione peroxidase (GSH-Px), SOD, and decreasing malondialdehyde (MDA) expression. Mechanically, DHA and BMMSCs cotreatment significantly inhibited the expression of TGFβ-RI, TGFβ-RII, phosphor (p)-Smad2/3, and Smad4 in a dose-dependent manner while stimulated Smad7 expression in the same manner. In conclusion, our findings provided evidence that DHA effectively eliminated inflammatory and oxidative stress against prostate injury, and this effect involved the TGF-β/Smad signaling pathway in CBP.


2007 ◽  
Vol 177 (4S) ◽  
pp. 35-35
Author(s):  
Gianluca Giannarini ◽  
Andrea Mogorovich ◽  
Girolamo Morelli ◽  
Maurizio De Maria ◽  
Francesca Manassero ◽  
...  

VASA ◽  
2017 ◽  
Vol 46 (4) ◽  
pp. 268-274
Author(s):  
Erhan Saraçoğlu ◽  
Ertan Vuruşkan ◽  
Yusuf Çekici ◽  
Salih Kiliç ◽  
Halil Ay ◽  
...  

Abstract. Background: After carotid artery stenting (CAS), neurological complications that cannot be explained with imaging methods may develop. In our study we aimed to show, using oxidative stress markers, isolated oxidative damage and resulting neurological findings following CAS in patients with asymptomatic carotid artery stenosis. Patients and methods: We included 131 neurologically asymptomatic patients requiring CAS. The neurological findings were evaluated using the modified Rankin Scale (mRS) prior to the procedure, one hour post-procedure, and two days after. Patients with elevated mRS scores but with or without typical hyperintense lesions observed on an MRI and with changes of oxidative stress marker levels at the time (Δtotal-thiol, Δtotal antioxidative status [TAS], and Δtotal oxidant status [TOS]) were evaluated. Results: In the neurological examination carried out one hour prior to the procedure, there were 92 patients with mRS = 0, 20 with mRS = 1, and 12 with mRS = 2. When Δtotal-thiol, ΔTAS, and ΔTOS values and the mRS were compared, it was observed that as the difference in oxidative parameters increased, clinical deterioration also increased proportionally (p = 0.001). Conclusions: We demonstrate a possible correlation between oxidative damage and neurological findings after CAS which could not be explained by routine imaging methods.


Reproduction ◽  
2000 ◽  
pp. 143-149 ◽  
Author(s):  
RM Sainz ◽  
RJ Reiter ◽  
JC Mayo ◽  
J Cabrera ◽  
DX Tan ◽  
...  

Pregnancy is a physiological state accompanied by a high energy demand of many bodily functions and an increased oxygen requirement. Because of the increased intake and utilization of oxygen, increased levels of oxidative stress would be expected. In the present study, the degree of lipid peroxidation was examined in different tissues from non-pregnant and pregnant rats after the delivery of their young. Melatonin and other indole metabolites are known to be direct free radical scavengers and indirect antioxidants. Thus the effect of pinealectomy at 1 month before pregnancy on the accumulation of lipid damage was investigated in non-pregnant and pregnant rats after the delivery of their young. Malonaldehyde and 4-hydroxyalkenal concentrations were measured in the lung, uterus, liver, brain, kidney, thymus and spleen from intact and pinealectomized pregnant rats soon after birth of their young and at 14 and 21 days after delivery. The same parameters were also evaluated in intact and pinealectomized non-pregnant rats. Shortly after delivery, lipid oxidative damage was increased in lung, uterus, brain, kidney and thymus of the mothers. No differences were detected in liver and spleen. Pinealectomy enhanced this effect in the uterus and lung. It is concluded that during pregnancy high levels of oxidative stress induce an increase in oxidative damage to lipids, which in some cases is inhibited by the antioxidative actions of pineal indoles.


2020 ◽  
Vol 31 (1) ◽  
pp. 3-10
Author(s):  
V. S. Nedzvetsky ◽  
V. Ya. Gasso ◽  
A. M. Hahut ◽  
I. A. Hasso

Cadmium is a common transition metal that entails an extremely wide range of toxic effects in humans and animals. The cytotoxicity of cadmium ions and its compounds is due to various genotoxic effects, including both DNA damage and chromosomal aberrations. Some bone diseases, kidney and digestive system diseases are determined as pathologies that are closely associated with cadmium intoxication. In addition, cadmium is included in the list of carcinogens because of its ability to initiate the development of tumors of several forms of cancer under conditions of chronic or acute intoxication. Despite many studies of the effects of cadmium in animal models and cohorts of patients, in which cadmium effects has occurred, its molecular mechanisms of action are not fully understood. The genotoxic effects of cadmium and the induction of programmed cell death have attracted the attention of researchers in the last decade. In recent years, the results obtained for in vivo and in vitro experimental models have shown extremely high cytotoxicity of sublethal concentrations of cadmium and its compounds in various tissues. One of the most studied causes of cadmium cytotoxicity is the development of oxidative stress and associated oxidative damage to macromolecules of lipids, proteins and nucleic acids. Brain cells are most sensitive to oxidative damage and can be a critical target of cadmium cytotoxicity. Thus, oxidative damage caused by cadmium can initiate genotoxicity, programmed cell death and inhibit their viability in the human and animal brains. To test our hypothesis, cadmium cytotoxicity was assessed in vivo in U251 glioma cells through viability determinants and markers of oxidative stress and apoptosis. The result of the cell viability analysis showed the dose-dependent action of cadmium chloride in glioma cells, as well as the generation of oxidative stress (p <0.05). Calculated for 48 hours of exposure, the LD50 was 3.1 μg×ml-1. The rates of apoptotic death of glioma cells also progressively increased depending on the dose of cadmium ions. A high correlation between cadmium concentration and apoptotic response (p <0.01) was found for cells exposed to 3–4 μg×ml-1 cadmium chloride. Moreover, a significant correlation was found between oxidative stress (lipid peroxidation) and induction of apoptosis. The results indicate a strong relationship between the generation of oxidative damage by macromolecules and the initiation of programmed cell death in glial cells under conditions of low doses of cadmium chloride. The presented results show that cadmium ions can induce oxidative damage in brain cells and inhibit their viability through the induction of programmed death. Such effects of cadmium intoxication can be considered as a model of the impact of heavy metal pollution on vertebrates.


2020 ◽  
Vol 17 (3) ◽  
pp. 191-199
Author(s):  
Seval Yilmaz ◽  
Fatih Mehmet Kandemir ◽  
Emre Kaya ◽  
Mustafa Ozkaraca

Objective: This study aimed to detect hepatic oxidative damage caused by aflatoxin B1 (AFB1), as well as to examine how propolis protects against hepatotoxic effects of AFB1. Method: Rats were split into four groups as control group, AFB1 group, propolis group, AFB1+ propolis group. Results: There was significant increase in malondialdehyde (MDA) level and tumor suppressor protein (TP53) gene expression, Glutathione (GSH) level, Catalase (CAT) activity, CAT gene expression decreased in AFB1 group in blood. MDA level and Glutathione-S-Transferase (GST) activity, GST and TP53 gene expressions increased in AFB1 group, whereas GSH level and CAT activity alongside CAT gene expression decreased in liver. AFB1+propolis group showed significant decrease in MDA level, GST activity, TP53 and GST gene expressions, GSH level and CAT activity and CAT gene expression increased in liver compared to AFB1 group. Conclusion: These results suggest that propolis may potentially be natural agent that prevents AFB1- induced oxidative stress and hepatotoxicity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fujiao Nie ◽  
Jiazhao Yan ◽  
Yanjun Ling ◽  
Zhengrong Liu ◽  
Chaojun Fu ◽  
...  

Abstract Background Diabetic retinopathy (DR) has become a worldwide concern because of the rising prevalence rate of diabetes mellitus (DM). Despite much energy has been committed to DR research, it remains a difficulty for diabetic patients all over the world. Since apoptosis of retinal microvascular pericytes (RMPs) is the early characteristic of DR, this study aimed to reveal the mechanism of Shuangdan Mingmu (SDMM) capsule, a Chinese patent medicine, on oxidative stress-induced apoptosis of pericytes implicated with poly (ADP-ribose) polymerase (PARP) / glyceraldehyde 3-phosphate dehydrogenase (GAPDH) pathway. Methods Network pharmacology approach was performed to predict biofunction of components of SDMM capsule dissolved in plasma on DR. Both PARP1 and GAPDH were found involved in the hub network of protein-protein interaction (PPI) of potential targets and were found to take part in many bioprocesses, including responding to the regulation of reactive oxygen species (ROS) metabolic process, apoptotic signaling pathway, and response to oxygen levels through enrichment analysis. Therefore, in vitro research was carried out to validate the prediction. Human RMPs cultured with media containing 0.5 mM hydrogen oxide (H2O2) for 4 h was performed as an oxidative-damage model. Different concentrations of SDMM capsule, PARP1 inhibitor, PARP1 activation, and GAPDH inhibitor were used to intervene the oxidative-damage model with N-Acetyl-L-cysteine (NAC) as a contrast. Flow cytometry was performed to determine the apoptosis rate of cells and the expression of ROS. Cell counting kit 8 (CCK8) was used to determine the activity of pericytes. Moreover, nitric oxide (NO) concentration of cells supernatant and expression of endothelial nitric oxide synthase (eNOS), superoxide dismutase (SOD), B cell lymphoma 2 (BCL2), vascular endothelial growth factor (VEGF), endothelin 1 (ET1), PARP1, and GAPDH were tested through RT-qPCR, western blot (WB), or immunocytochemistry (ICC). Results Overproduction of ROS, high apoptotic rate, and attenuated activity of pericytes were observed after cells were incubated with media containing 0.5 mM H2O2. Moreover, downregulation of SOD, NO, BCL2, and GAPDH, and upregulation of VEGFA, ET1, and PARP1 were discovered after cells were exposed to 0.5 mM H2O2 in this study, which could be improved by PARP1 inhibitor and SDMM capsule in a dose-dependent way, whereas worsened by PARP1 activation and GAPDH inhibitor. Conclusions SDMM capsule may attenuate oxidative stress-induced apoptosis of pericytes through downregulating PARP expression and upregulating GAPDH expression.


Author(s):  
Tommaso Cai ◽  
Luca Gallelli ◽  
Erika Cione ◽  
Gianpaolo Perletti ◽  
Francesco Ciarleglio ◽  
...  

Abstract Purpose To evaluate the efficacy of Lactobacillus paracasei CNCM I-1572 (L. casei DG®) in both prevention of symptomatic recurrences and improvement of quality of life in patients with chronic bacterial prostatitis (CBP). Methods Patients with CBP attending a single Urological Institution were enrolled in this phase IV study. At enrollment, all patients were treated with antibiotics in agreement with EAU guidelines and then were treated with L. casei DG® (2 capsules/day for 3 months). Clinical and microbiological analyses were carried out before (enrollment, T0) and 6 months (T2) after the treatment. Both safety and adherence to the treatment were evaluated 3 months (T1) after the enrollment. NIH Chronic Prostatitis Symptom Index (CPSI), International Prostate Symptom Score (IPSS) and Quality of Well-Being (QoL) questionnaires were used. The outcome measures were the rate of symptomatic recurrence, changes in questionnaire symptom scores and the reduction of antibiotic use. Results Eighty-four patients were included. At T2, 61 patients (72.6%) reported a clinical improvement of symptoms with a return to their clinical status before symptoms. A time dependent improvement in clinical symptoms with significant changes in NIH-CPSI, IPSS and QoL (mean difference T2 vs T0: 16.5 ± 3.58; − 11.0 ± 4.32; + 0.3 ± 0.09; p < 0.001), was reported. We recorded that L. casei DG® treatment induced a statistically significant decrease in both (p < 0.001) symptomatic recurrence [1.9/3 months vs 0.5/3 months] and antibiotic use [− 7938 UDD]. No clinically relevant adverse effects were reported. Conclusions L. casei DG® prevents symptomatic recurrences and improves the quality of life in patients with CBP, reducing the antibiotic use.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 97
Author(s):  
Leila Rashki Ghaleno ◽  
AliReza Alizadeh ◽  
Joël R. Drevet ◽  
Abdolhossein Shahverdi ◽  
Mojtaba Rezazadeh Valojerdi

One important reason for male infertility is oxidative stress and its destructive effects on sperm structures and functions. The particular composition of the sperm membrane, rich in polyunsaturated fatty acids, and the easy access of sperm DNA to oxidative damage due to sperm cell specific cytologic and metabolic features (no cytoplasm left and cells unable to mount stress responses) make it the cell type in metazoans most susceptible to oxidative damage. In particular, oxidative damage to the spermatozoa genome is an important issue and a cause of male infertility, usually associated with single- or double-strand paternal DNA breaks. Various methods of detecting sperm DNA fragmentation have become important diagnostic tools in the prognosis of male infertility and such assays are available in research laboratories and andrology clinics. However, to date, there is not a clear consensus in the community as to their respective prognostic value. Nevertheless, it is important to understand that the effects of oxidative stress on the sperm genome go well beyond DNA fragmentation alone. Oxidation of paternal DNA bases, particularly guanine and adenosine residues, the most sensitive residues to oxidative alteration, is the starting point for DNA damage in spermatozoa but is also a danger for the integrity of the embryo genetic material independently of sperm DNA fragmentation. Due to the lack of a spermatozoa DNA repair system and, if the egg is unable to correct the sperm oxidized bases, the risk of de novo mutation transmission to the embryo exists. These will be carried on to every cell of the future individual and its progeny. Thus, in addition to affecting the viability of the pregnancy itself, oxidation of the DNA bases in sperm could be associated with the development of conditions in young and future adults. Despite these important issues, sperm DNA base oxidation has not attracted much interest among clinicians due to the lack of simple, reliable, rapid and consensual methods of assessing this type of damage to the paternal genome. In addition to these technical issues, another reason explaining why the measurement of sperm DNA oxidation is not included in male fertility is likely to be due to the lack of strong evidence for its role in pregnancy outcome. It is, however, becoming clear that the assessment of DNA base oxidation could improve the efficiency of assisted reproductive technologies and provide important information on embryonic developmental failures and pathologies encountered in the offspring. The objective of this work is to review relevant research that has been carried out in the field of sperm DNA base oxidation and its associated genetic and epigenetic consequences.


Sign in / Sign up

Export Citation Format

Share Document