scholarly journals Establishment and Utilization of a Tetracycline-controlled Inducible RNA Interfering System to Repress Gene Expression in Chronic Myelogenous Leukemia Cells

2005 ◽  
Vol 37 (12) ◽  
pp. 851-856 ◽  
Author(s):  
Fan Yang ◽  
Yun Zhang ◽  
Ying-Li Cao ◽  
Shu-Hui Wang ◽  
Li Liu

Abstract RNA interference (RNAi), a posttranscriptional gene silencing process mediated by small double-stranded RNA specifically complementary to the targeted transcript, has been used extensively in the development of novel therapeutic approaches against various human diseases including chronic myelogenous leukemia (CML). Here, we report the successful construction of a tetracycline-controlled siRNA in CML cell line K562. A K562 cell line stably expressing the reverse tetracycline-controlled transactivator (rtTA) was constructed. A tetracycline responsive element (TRE) was integrated into the RNA polymerase III promoter region of pBS/U6 that was used to drive specific siRNA to target the novel cytokine receptor-like factor 3 (CRLF3) gene. The results show that rtTA was able to recognize the TRE to prevent siRNA-mediated exogenous and endogenous CRLF3 gene repressions. Moreover, CRLF3–siRNA mediated gene repression could be induced in a dose-dependent manner in the presence of doxycycline. Thus, the inducible siRNAi system in K562 cells might be useful for the study of RNAi-mediated therapeutic approaches against CML.

Bionatura ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 1725-1732
Author(s):  
Hamdah Alsaeedi ◽  
Rowaid Qahwaji ◽  
Talal Qadah

Kola nut extracts have recently been reported to contain chemopreventive compounds providing several pharmacological benefits. This study investigated Kola nut extracts' anti-cancer activity on human immortalized myelogenous leukemia cell line K562 through apoptosis and cell cycle arrest. Fresh Kola nuts were prepared as powder and dissolved in DMSO. Different concentrations (50, 100, 150, 200, and 250 μg/ml) of working solutions were prepared. The K562 cells were treated with the different concentrations of Kola nut extract or vehicle control (10% DMSO) followed by incubation at 37°C for 24, 48, and 72 hours, respectively. Treatment activity was investigated in K562 cells; by Resazurin, and FITC/Propidium Iodide and 7-AAD stained cells to evaluate apoptotic cells and the cell cycle's progression. Inhibition of leukemia cell proliferation was observed. The extract effectively induced cell death, early and late apoptosis by approximately 30% after 24 and 48 hours incubation, and an increase in the rate of dead cells by 50% was observed after 72 hours of incubation. Also, cell growth reduction was seen at high dose concentrations (150 and 200 µg/ml), as evident by cell count once treated with Kola nut extract. The total number of apoptotic cells increased from 5.8% of the control group to 27.4% at 250 µg/ml concentration. Moreover, Kola nut extracts' effects on K562 cells increased gradually in a dose and time-dependent manner. It was observed that Kola nut extracts could arrest the cell cycle in the G2/M phase as an increase in the number of cells by 29.8% and 14.6 % were observed from 9.8% and 5.2% after 24 and 48 hours of incubation, respectively. This increase was detected in a dose and time-dependent manner. Kola nut extracts can be used as a novel anti-cancer agent in Leukemia treatment as it has shown significant therapeutic potential and therefore provides new insights in understanding the mechanisms of its action. Keywords: Kola nut extracts, Leukemia, K562 cell line, Apoptosis, Cancer.


Blood ◽  
2012 ◽  
Vol 120 (17) ◽  
pp. 3555-3562 ◽  
Author(s):  
Dennis J. Goussetis ◽  
Elias Gounaris ◽  
Edward J. Wu ◽  
Eliza Vakana ◽  
Bhumika Sharma ◽  
...  

Abstract We provide evidence that arsenic trioxide (As2O3) targets the BCR-ABL oncoprotein via a novel mechanism involving p62/SQSTM1-mediated localization of the oncoprotein to the autolysosomes and subsequent degradation mediated by the protease cathepsin B. Our studies demonstrate that inhibitors of autophagy or cathepsin B activity and/or molecular targeting of p62/SQSTM1, Atg7, or cathepsin B result in partial reversal of the suppressive effects of AS2O3 on BCR-ABL expressing leukemic progenitors, including primitive leukemic precursors from chronic myelogenous leukemia (CML) patients. Altogether, these findings indicate that autophagic degradation of BCR-ABL is critical for the induction of the antileukemic effects of As2O3 and raise the potential for future therapeutic approaches to target BCR-ABL expressing cells by modulating elements of the autophagic machinery to promote BCR-ABL degradation.


2003 ◽  
Vol 94 (6) ◽  
pp. 557-563 ◽  
Author(s):  
Motoi Mukai ◽  
Xiao-Fang Che ◽  
Tatsuhiko Furukawa ◽  
Tomoyuki Sumizawa ◽  
Shunji Aoki ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2202-2202
Author(s):  
Katharina M. Brauer ◽  
Daniela Werth ◽  
Karin von Schwarzenberg ◽  
Anita Bringmann ◽  
Lothar Kanz ◽  
...  

Abstract Imatinib mesylate (Gleevec®) is a specific tyrosine kinase inhibitor, which inhibits phosphorylation of downstream proteins involved in BCR-ABL signal transduction. In the treatment of chronic myelogenous leukemia (CML) it has become indispensable and shows few side effects. Recently, it was shown that patients treated with imatinib showed impaired CTL responses in comparison to patients treated with IFN-α, which might be due to a reduced immunogenicity of CML cells or result from an inhibitory effect of imatinib on the function of antigen presenting cells and T lymphocytes. In the present study, we show that imatinib treatment leads to a downregulation of immunogenic antigens on the CML cells, which in turn inhibits the development of CML-specific cytotoxic T lymphocytes (CTLs). To achieve this, we treated the CML cell line K562 and an imatinib-resistant K562 variant, K562R, with imatinib or DMSO, isolated the total RNA and used it to electroporate monocyte-derived dendritic cells (DCs). These cells were then used as antigen presenting cells (APCs) for the induction of polyclonal CTL responses. The cytolytic activity of the CTLs was assayed in standard 51Cr-release assays and their fine specificity in IFNγ-Elispot assays. CTLs generated using RNA from imatinib-treated K562 cells were completely incapable of specific killing and did not react in Elispot assays, whereas those CTLs induced using RNA from K562 cells subjected to DMSO treatment as well as RNA from imatinib-treated K562R cells showed specific cytolytic activity against targets electroporated with RNA from CML cells and were able to recognize several CML-associated antigens, like survivin, PRAME, WT-1 and PR3 in Elispot assays. To confirm that this effect is mediated by BCR-ABL inhibition, we used specific siRNA against the bcr-abl fusion site b3a2 to downregulate the protein expression and found essentially the same results. Even in K562R cells, that constitutively overexpress BCR-ABL, targeting the expression of the protein directly by specific siRNA leads to an impairment of CTL induction. In order to confirm and expand these studies, we additionally analyzed the expression of antigens connected to immune responses to CML in Western Blot and Real-time PCR experiments. We found, that imatinib-mediated inhibition of BCR-ABL in K562 cells leads to a decreased expression of tumor antigens and cellular proteins including survivin, adipophilin, hTERT, WT-1, Bcl-xL and Bcl-2 in correlation to the decreased development of specific CTLs. Matching the results of the 51Cr-release assays, these effects were not observed in K562R cells. In primary CML cells subjected to imatinib a downregulation of hTERT and survivin could be detected, which corresponded to a decreased lysis of DCs electroporated with RNA from these cells in standard 51Cr-release assays. Our results demonstrate, that BCR-ABL directly influences the expression of immunogenic tumor associated antigens by its uncontrolled tyrosine kinase activity and therefore substantially contributes to the immunogenicity of CML cells.


Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 404-411 ◽  
Author(s):  
A Yuo ◽  
S Kitagawa ◽  
T Okabe ◽  
A Urabe ◽  
Y Komatsu ◽  
...  

We examined the in vitro effect of recombinant human granulocyte colony- stimulating factor (rhG-CSF) on neutrophil anomalies in 20 patients with myelodysplastic syndromes (MDS) and eight patients with chronic myelogenous leukemia (CML). Neutrophil alkaline phosphatase (NAP) activity was determined in nine MDS patients and eight CML patients by a scoring method. NAP scores were decreased in six of the nine patients with MDS and in all of the patients with CML. In all patients with these diseases, NAP scores increased by incubating the blood with rhG- CSF. An increase in NAP scores by rhG-CSF was observed even at a concentration of 1 U/mL in patients with MDS but was observed only at higher concentrations (1,000 to 10,000 U/mL) in patients with CML. Significant increases in NAP scores occurred at 12 hours' incubation in patients with MDS, whereas the increase was more gradual in patients with CML. This time course difference was thought to be due mainly to the difference in cell populations of circulating myeloid cells between MDS patients and CML patients. Induction of NAP activity by rhG-CSF in patients with both these diseases was suppressed by the addition of inhibitors of RNA or protein synthesis. Neutrophil superoxide anion (O2- ) production induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) was determined in the other 11 patients with MDS. This neutrophil function was decreased in seven of the 11 patients with MDS, normal in two patients, and increased in two patients. Preincubation with rhG-CSF caused a significant increase in fMLP-induced O2- production in nine of the 11 patients with MDS. rhG-CSF enhanced this neutrophil function in a time- and dose-dependent manner, and maximal stimulation was observed at 2,000 to 4,000 U/mL of rhG-CSF and at five to ten minutes' incubation. The present results show that rhG-CSF is able to repair at least in part the neutrophil anomalies in these patients, and our data, especially for patients with MDS, suggest the clinical usefulness of rhG-CSF for this preleukemic disorder.


Blood ◽  
1975 ◽  
Vol 45 (3) ◽  
pp. 321-334 ◽  
Author(s):  
CB Lozzio ◽  
BB Lozzio

Abstract A cell-line derived from a patient with chronic myelogenous leukemia (CML) is described. The new cell-line, which has over 175 serial passanges in a 3 1/2-yr period, has the following characteristics: (1) CML cells started to proliferate actively since they were first incubated in culture media. A threefold increase in the total number of cells was observed during the first seven passages; the cell population increased by a factor of 10 to 20 every 7 days from passage 8 through 85; from 20 to 40 times from passage 86 through 150, and more than 40 times after 150 passages. (2) The majority of the nononucleated cells are undifferentiated blasts. (3) The karyotype of all the cells examined show the Philadelphia (Ph1) chromosome and a long acrocentric marker plus aneuploidy. The Giemsa-banding studies identified the Ph1 chromosome as a terminal deletion of the long arm of chromosome 22:del(22)(q12) and the long acrocentric marker as an unbalanced reciprocal translocation of one chromosome 17 and the long arm of one chromosome 15. (4) The CML cells do not produce immunoglobulins, are free of mycoplasma, Epstein-Barr virus, and herpes-like virus particles. (5) CML cells have no alkaline phosphatase and myeloperoxidase activities and did not engulf inert particles. (6) Cultured CML cells provide a constant source of a specific antigen. This CML cell-line represents a unique source of CML cells with meaningful indicators of malignancy for clinical and experimental studies.


2020 ◽  
Vol 21 (14) ◽  
pp. 5077
Author(s):  
Bin Zhang ◽  
Ting Zhang ◽  
Tian-Yi Zhang ◽  
Ning Wang ◽  
Shan He ◽  
...  

Chronic myeloid leukemia (CML) is a malignant tumor caused by the abnormal proliferation of hematopoietic stem cells. Among a new series of acridone derivatives previously synthesized, it was found that the methoxybenzyl 5-nitroacridone derivative 8q has nanomolar cytotoxicity in vitro against human chronic myelogenous leukemia K562 cells. In order to further explore the possible anti-leukemia mechanism of action of 8q on K562 cells, a metabolomics and molecular biology study was introduced. It was thus found that most of the metabolic pathways of the G1 phase of K562 cells were affected after 8q treatment. In addition, a concentration-dependent accumulation of cells in the G1 phase was observed by cell cycle analysis. Western blot analysis showed that 8q significantly down-regulated the phosphorylation level of retinoblastoma-associated protein (Rb) in a concentration-dependent manner, upon 48 h treatment. In addition, 8q induced K562 cells apoptosis, through both mitochondria-mediated and exogenous apoptotic pathways. Taken together, these results indicate that 8q effectively triggers G1 cell cycle arrest and induces cell apoptosis in K562 cells, by inhibiting the CDK4/6-mediated phosphorylation of Rb. Furthermore, the possible binding interactions between 8q and CDK4/6 protein were clarified by homology modeling and molecular docking. In order to verify the inhibitory activity of 8q against other chronic myeloid leukemia cells, KCL-22 cells and K562 adriamycin-resistant cells (K562/ADR) were selected for the MTT assay. It is worth noting that 8q showed significant anti-proliferative activity against these cell lines after 48 h/72 h treatment. Therefore, this study provides new mechanistic information and guidance for the development of new acridones for application in the treatment of CML.


Sign in / Sign up

Export Citation Format

Share Document