Critical swimming speed of sterlet ( Acipenser ruthenus ): Does intraspecific hybridization affect swimming performance?

2018 ◽  
Vol 35 (1) ◽  
pp. 217-225 ◽  
Author(s):  
Sahana Shivaramu ◽  
Carlos E. Santo ◽  
Vojtěch Kašpar ◽  
David Bierbach ◽  
Jörn Gessner ◽  
...  
2016 ◽  
Vol 7 (1) ◽  
pp. 198-204 ◽  
Author(s):  
David Deslauriers ◽  
Ryan Johnston ◽  
Steven R. Chipps

Abstract We assessed the effect of fin-curl on the swimming and station-holding ability of juvenile shovelnose sturgeon Scaphirhynchus platorynchus (mean fork length = 17 cm; mean weight = 16 g; n = 21) using a critical swimming speed test performed in a small swim chamber (90 L) at 20°C. We quantified fin-curl severity using the pectoral fin index. Results showed a positive relationship between pectoral fin index and critical swimming speed indicative of reduced swimming performance displayed by fish afflicted with a pectoral fin index < 8%. Fin-curl severity, however, did not affect the station-holding ability of individual fish. Rather, fish affected with severe fin-curl were likely unable to use their pectoral fins to position their body adequately in the water column, which led to the early onset of fatigue. Results generated from this study should serve as an important consideration for future stocking practices.


1995 ◽  
Vol 73 (11) ◽  
pp. 2165-2167 ◽  
Author(s):  
Alan S. Kolok ◽  
James T. Oris

The objective of this study was to test the hypothesis that the specific growth rate of male fathead minnows (Pimephales promelas) was positively correlated with swimming performance. Subadult fish were allowed to grow into adults over a period of 31 – 55 days, after which the critical swimming speed of each fish was determined. Variation in critical swimming speed was substantial (greater than 50%), and a significant positive correlation was found between number of growing days and critical swimming speed, whereas a significant negative correlation was found between specific growth rate and critical swimming speed. A multiple regression using specific growth rate and number of growing days explained over 47% of the variation in swimming performance. Fathead minnows that grow fast are poor swimmers, suggesting a trade-off between swimming performance and specific growth rate in this species.


Author(s):  
Julie C. Krzykwa ◽  
Gabriella S. Lamanteer ◽  
Marlo K. Sellin Jeffries

Critical swimming performance (UCRIT) is considered a good predictor of swimming capabilities in fish. To estimate UCRIT, a fish is exposed to an incrementally-increasing laminar flow of water until it cannot maintain its position against the current. The spinning task assay has been proposed as an alternative method to traditional laminar flow methods; however, these methods have not been directly compared. Thus, the goal of this study was to determine whether the spinning task assay is a suitable alternative to traditional laminar flow assays. To that end, the performance of fathead minnows in each assay was compared at three time points (14, 19 and 24 days post fertilization, dpf). In 14 dpf fish, UCRIT estimates were similar regardless of the assay used. However, at 19 and 24 dpf, UCRIT estimates derived from the two assay types were significantly different. This indicates that the assays are not equivalent to one another and that the spinning task assay is not a suitable alternative to the laminar flow assay for the determination of UCRIT.


1998 ◽  
Vol 201 (14) ◽  
pp. 2183-2193 ◽  
Author(s):  
A P Farrell ◽  
A K Gamperl ◽  
I K Birtwell

Mature, wild sockeye salmon (Oncorhynchus nerka) demonstrated their remarkable stamina and recovery abilities by performing three consecutive critical swimming speed tests with only a 45 min interval for recovery between subsequent tests. Although the repeated swimming challenges were performed without a full recovery, normoxic fish swam just as well on the second swim, and the majority of fish swam only marginally more poorly on the third swim. In addition, metabolic loading in these fish, as measured by the rate of oxygen consumption, ventilation rate and plasma lactate levels during recovery, did not appear to be cumulative with successive swims. Fish, however, did not recover as well after a similar level of initial swimming performance under moderately hypoxic conditions (water PO2>100 mmHg; 1 mmHg=0.1333 kPa). Four out of the five fish did not swim again and their high plasma lactate levels indicated a greater anaerobic effort. In another group of fish, metabolic loading (elevated control rates of oxygen consumption) was induced with an overnight sublethal exposure to pentachlorophenol, but these fish swam as well as normoxic fish on the first swim, and five of the six fish swam for a third time at a marginally lower critical swimming speed. In contrast to expectations, pentachlorophenol pretreatment and moderate hypoxia were not additive in their effects. Instead, the effects resembled those of pentachlorophenol pretreatment alone. The results are discussed in terms of what aspects of fatigue might impair the repeat swimming performance of sockeye salmon.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1430
Author(s):  
Feifei He ◽  
Xiaogang Wang ◽  
Yun Li ◽  
Yiqun Hou ◽  
Qiubao Zou ◽  
...  

Anaerobic metabolism begins before fish reach their critical swimming speed. Anaerobic metabolism affects the swimming ability of fish, which is not conducive to their upward tracking. The initiation of anaerobic metabolism therefore provides a better predictor of flow barriers than critical swimming speed. To estimate the anaerobic element of metabolism for swimming fish, the respiratory metabolism and swimming performance of adult crucian carp (Carassius auratus, mass = 260.10 ± 7.93, body length = 19.32 ± 0.24) were tested in a closed tank at 20 ± 1 °C. The swimming behavior and rate of oxygen consumption of these carp were recorded at various swimming speeds. Results indicate (1) The critical swimming speed of the crucian carp was 0.85 ± 0.032 m/s (4.40 ± 0.16 BL/s). (2) When a power function was fitted to the data, oxygen consumption, as a function of swimming speed, was determined to be AMR = 131.24 + 461.26Us1.27 (R2 = 0.948, p < 0.001) and the power value (1.27) of Us indicated high swimming efficiency. (3) Increased swimming speed led to increases in the tail beat frequency. (4) Swimming costs were calculated via rate of oxygen consumption and hydrodynamic modeling. Then, the drag coefficient of the crucian carp during swimming was calibrated (0.126–0.140), and the velocity at which anaerobic metabolism was initiated was estimated (0.52 m/s), via the new method described herein. This study adds to our understanding of the metabolic patterns of fish at different swimming speeds.


2017 ◽  
Vol 1 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Maroš Kubala ◽  
Martin Farský ◽  
Ladislav Pekárik

2020 ◽  
Vol 22 (1) ◽  
pp. 6
Author(s):  
Ievgeniia Gazo ◽  
Roman Franěk ◽  
Radek Šindelka ◽  
Ievgen Lebeda ◽  
Sahana Shivaramu ◽  
...  

DNA damage caused by exogenous or endogenous factors is a common challenge for developing fish embryos. DNA damage repair (DDR) pathways help organisms minimize adverse effects of DNA alterations. In terms of DNA repair mechanisms, sturgeons represent a particularly interesting model due to their exceptional genome plasticity. Sterlet (Acipenser ruthenus) is a relatively small species of sturgeon. The goal of this study was to assess the sensitivity of sterlet embryos to model genotoxicants (camptothecin, etoposide, and benzo[a]pyrene), and to assess DDR responses. We assessed the effects of genotoxicants on embryo survival, hatching rate, DNA fragmentation, gene expression, and phosphorylation of H2AX and ATM kinase. Exposure of sterlet embryos to 1 µM benzo[a]pyrene induced low levels of DNA damage accompanied by ATM phosphorylation and xpc gene expression. Conversely, 20 µM etoposide exposure induced DNA damage without activation of known DDR pathways. Effects of 10 nM camptothecin on embryo development were stage-specific, with early stages, before gastrulation, being most sensitive. Overall, this study provides foundational information for future investigation of sterlet DDR pathways.


1989 ◽  
Vol 46 (3) ◽  
pp. 384-388 ◽  
Author(s):  
F. W. H. Beamish ◽  
J. C. Howlett ◽  
T. E. Medland

Juvenile lake trout, Salvelinus namaycush, of similar size were fed one of three isocaloric diets, each differing in protein and lipid content. Oxygen consumption and swimming performance were measured in a recirculating water flume at intervals throughout the 70-d feeding trials (10 °C). Swimming speed was increased by stepwise velocity increments (5 cm∙s−1) and oxygen consumption was measured at each velocity between 20 and 45 cm∙s−1. Oxygen consumption for a given speed did not differ significantly throughout the feeding trial nor among the diets implying a similarity in the quality and quantity of substrate catabolized for energy. Basal metabolism (0 cm∙s−1) was also independent of diet and feeding interval. Critical swimming speed increased with dietary and carcass protein content to suggest a direct association with muscle mass and number of myofilaments.


2015 ◽  
Vol 73 (4) ◽  
pp. 1127-1137 ◽  
Author(s):  
Leif Nøttestad ◽  
Justine Diaz ◽  
Hector Penã ◽  
Henrik Søiland ◽  
Geir Huse ◽  
...  

Abstract High abundance of Northeast Atlantic mackerel (Scomber scombrus L.), combined with limited food resources, may now force mackerel to enter new and productive regions in the northern Norwegian Sea. However, it is not known how mackerel exploit the spatially varying feeding resources, and their vertical distribution and swimming behaviour are also largely unknown. During an ecosystem survey in the Norwegian Sea during the summer feeding season, swimming direction, and speed of mackerel schools were recorded with high-frequency omnidirectional sonar in four different regions relative to currents, ambient temperature, and zooplankton. A total of 251 schools were tracked, and fish and zooplankton were sampled with pelagic trawl and WP-2 plankton net. Except for the southwest region, swimming direction of the tracked schools coincided with the prevailing northerly Atlantic current direction in the Norwegian Sea. Swimming with the current saves energy, and the current also provides a directional cue towards the most productive areas in the northern Norwegian Sea. Average mean swimming speed in all regions combined was ∼3.8 body lengths s−1. However, fish did not swim in a straight course, but often changed direction, suggesting active feeding in the near field. Fish were largest and swimming speed lowest in the northwest region which had the highest plankton concentrations and lowest temperature. Mackerel swam close to the surface at a depth of 8–39 m, with all schools staying above the thermocline in waters of at least 6°C. In surface waters, mackerel encounter improved foraging rate and swimming performance. Going with the flow until temperature is too low, based on an expectation of increasing foraging rate towards the north while utilizing available prey under way, could be a simple and robust feeding strategy for mackerel in the Norwegian Sea.


Sign in / Sign up

Export Citation Format

Share Document