The potential of additive manufacturing technologies and their processing parameters for the fabrication of all‐ceramic crowns: A review

2019 ◽  
Vol 32 (2) ◽  
pp. 182-192 ◽  
Author(s):  
Mohammad Mujtaba Methani ◽  
Marta Revilla‐León ◽  
Amirali Zandinejad
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ajith Damodaran ◽  
M. Sugavaneswaran ◽  
Larry Lessard

AbstractThis paper aimed to provide a foundation database for understanding the important applications of the different additive manufacturing (AM) technologies for musical wind instruments. A systematic review methodology was adopted in this study. The different AM techniques, materials used, the technical features, and processing parameters uniquely related to wind instruments were discussed. Selected heterogeneous applications demonstrate how AM techniques are being exploited in the innovation, improvement in aesthetics of the existing wind instruments, understanding the ancient music, and personalization with its capability to tune specific instrument design parameters for professional musicians.


2020 ◽  
Vol 45 (2) ◽  
pp. 1-9
Author(s):  
Damjan Klobčar ◽  
Sebastijan Baloš ◽  
Matija Bašić ◽  
Aleksija Djurić ◽  
Maja Lindič ◽  
...  

The paper presents an overview of metal additive manufacturing technologies. The emphasis is on unconventional emerging technologies with firm background on welding technologies such as Ultrasonic Additive Manufacturing, Friction Additive Manufacturing, Thermal Spray Additive Manufacturing, Resistance Additive Manufacturing and Wire and Arc Additive Manufacturing. The particular processes are explained in detail and their advantages and drawbacks are presented. Attention is made on materials used, possibilities to produce multi-material products and functionally graded materials, and typical applications of currently developed technologies. The state-of-the-art on the Wire and Arc Additive Manufacturing is presented in more detail due to high research interests, it’s potential and widespread. The main differences between different arc additive manufacturing technologies are shown. An influence of processing parameters is discussed with respect to process stability and process control. The challenges related to path planning are shown together with the importance of post-processing. The main advantage of presented technologies is their ability of making larger and multi-material parts, with high deposition rate, which is difficult to achieve using conventional additive technologies.


2019 ◽  
Vol 13 (1) ◽  
pp. 371-376
Author(s):  
Abduljabbar Mohammed Alsameai ◽  
Basema Abdullah Khabaz ◽  
Mohammed Abdo Alraawi ◽  
Mohammed M Al Moaleem

Introduction: Maxillary canines play strategic roles in maintaining the normal function and visibility of teeth. However, rare cases of bilateral permanent congenitally missing maxillary canines were occurring. Replacing these missing canines with dental implant prostheses is an optimal treatment plan for aesthetics and functions. Case Report: In this case report, we described the replacement of bilateral maxillary canines with osseointegrated implants to support all-ceramic prostheses for a young female patient. This treatment avoids the conventional preparation of adjacent teeth as a part of prosthetic reconstructions. In addition to that, all-ceramic crowns are biocompatible with oral cavity structures. Conclusion: The stable short-term result has been achieved with the replacement of the bilateral congenitally missed canines with an implant and cemented all-ceramic crowns, with 3-years cumulative success rate.


2021 ◽  
Vol 1 ◽  
pp. 231-240
Author(s):  
Laura Wirths ◽  
Matthias Bleckmann ◽  
Kristin Paetzold

AbstractAdditive Manufacturing technologies are based on a layer-by-layer build-up. This offers the possibility to design complex geometries or to integrate functionalities in the part. Nevertheless, limitations given by the manufacturing process apply to the geometric design freedom. These limitations are often unknown due to a lack of knowledge of the cause-effect relationships of the process. Currently, this leads to many iterations until the final part fulfils its functionality. Particularly for small batch sizes, producing the part at the first attempt is very important. In this study, a structured approach to reduce the design iterations is presented. Therefore, the cause-effect relationships are systematically established and analysed in detail. Based on this knowledge, design guidelines can be derived. These guidelines consider process limitations and help to reduce the iterations for the final part production. In order to illustrate the approach, the spare parts production via laser powder bed fusion is used as an example.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3888
Author(s):  
Johanna Maier ◽  
Christian Vogel ◽  
Tobias Lebelt ◽  
Vinzenz Geske ◽  
Thomas Behnisch ◽  
...  

Generative hybridization enables the efficient production of lightweight structures by combining classic manufacturing processes with additive manufacturing technologies. This type of functionalization process allows components with high geometric complexity and high mechanical properties to be produced efficiently in small series without the need for additional molds. In this study, hybrid specimens were generated by additively depositing PA6 (polyamide 6) via fused layer modeling (FLM) onto continuous woven fiber GF/PA6 (glass fiber/polyamide 6) flat preforms. Specifically, the effects of surface pre-treatment and process-induced surface interactions were investigated using optical microscopy for contact angle measurements as well as laser profilometry and thermal analytics. The bonding characteristic at the interface was evaluated via quasi-static tensile pull-off tests. Results indicate that both the bond strength and corresponding failure type vary with pre-treatment settings and process parameters during generative hybridization. It is shown that both the base substrate temperature and the FLM nozzle distance have a significant influence on the adhesive tensile strength. In particular, it can be seen that surface activation by plasma can significantly improve the specific adhesion in generative hybridization.


2021 ◽  
Vol 1 ◽  
pp. 2127-2136
Author(s):  
Olivia Borgue ◽  
John Stavridis ◽  
Tomas Vannucci ◽  
Panagiotis Stavropoulos ◽  
Harry Bikas ◽  
...  

AbstractAdditive manufacturing (AM) is a versatile technology that could add flexibility in manufacturing processes, whether implemented alone or along other technologies. This technology enables on-demand production and decentralized production networks, as production facilities can be located around the world to manufacture products closer to the final consumer (decentralized manufacturing). However, the wide adoption of additive manufacturing technologies is hindered by the lack of experience on its implementation, the lack of repeatability among different manufacturers and a lack of integrated production systems. The later, hinders the traceability and quality assurance of printed components and limits the understanding and data generation of the AM processes and parameters. In this article, a design strategy is proposed to integrate the different phases of the development process into a model-based design platform for decentralized manufacturing. This platform is aimed at facilitating data traceability and product repeatability among different AM machines. The strategy is illustrated with a case study where a car steering knuckle is manufactured in three different facilities in Sweden and Italy.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 485
Author(s):  
Xufeng Li ◽  
Jian Lin ◽  
Zhidong Xia ◽  
Yongqiang Zhang ◽  
Hanguang Fu

Wire-arc additive manufacturing (WAAM) has been considered as one of the potential additive-manufacturing technologies to fabricate large components. However, its industrial application is still limited by the existence of stress and distortion. During the process of WAAM, the scanning pattern has an important influence on the temperature field, distortion and final quality of the part. Four kinds of deposition patterns, including sequence, symmetry, in–out and out–in, were designed to deposit H13 steel in this study. An in situ measurement system was set up to record the temperature history and the progress of accumulated distortion of the parts during deposition. An S value was proposed to evaluate the distortion of the substrate. It was shown that the distortion of the part deposited by sequence was significantly larger than those of other parts. The distortion deposited by the out–in pattern decreased by 68.6% compared with sequence. The inherent strain method and strain parameter were introduced to expose the mechanism of distortion reduction caused by pattern variation.


Sign in / Sign up

Export Citation Format

Share Document