Thermal degradation kinetics of bioactive compounds in button mushroom ( Agaricus bisporus ) during tray drying process

2020 ◽  
Vol 43 (12) ◽  
Author(s):  
Somya Singhal ◽  
Prasad Rasane ◽  
Sawinder Kaur ◽  
Jyoti Singh ◽  
Neeru Gupta
Author(s):  
Uma Fadzilia Arifin ◽  
Mohamad Djaeni

Post-harvest red chili pepper (Capsicum frutescens) has highly capsaicin as bioactive compound and moisture content. However, capsaicin is the responsible bioactive compound in chili for hot sensation that easy to degrade by partial oxidation caused introduction of heat in drying process. The objective of this research was to investigate kinetics of capsaicin degradation in the drying process under blanching-brine-calcium pretreatment and various temperatures. For this purposes, chili provided local farmer was pretreated using blanching-brine-calcium pretreatment. Afterward, they were dried at 40, 50, 60, and 70 oC for 8 hours. Degradation of capsaicin content was observed every 2 hours using Thin Layer Chromatography (TLC). Results showed kinetics of capsaicin degradation was categorized as second order reaction. At the same temperature and time, capsaicin retention of blanching-brine-calcium pretreated chili has highest value. The temperature dependence of the capsaicin degradation rate was analyzed using Arrhenius correlation. The activation energy for degradation rate of capsaicin during drying was around 45.10367 kJ/mol.K. It indicated the degradation rate increased as well as increased the temperature at the same time. Copyright © 2018 BCREC Group. All rights reservedReceived: 26th October 2017; Revised: 14th February 2018; Accepted: 18th February 2018; Available online: 11st June 2018; Published regularly: 1st August 2018How to Cite: Arifin, U.F., Djaeni, M. (2018). Thermal Degradation Kinetics of Capsaicin on Blanching-Brine-Calcium Pretreatment Red Chili Pepper Drying. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 365-372 (doi:10.9767/bcrec.13.2.1660.365-372) 


2012 ◽  
Vol 02 (04) ◽  
pp. 110-114 ◽  
Author(s):  
Y Jae-Young Lee ◽  
Hong-Ki Lee ◽  
Sung-Wan Hong ◽  
Il-Yub Choi

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1597
Author(s):  
Iman Jafari ◽  
Mohamadreza Shakiba ◽  
Fatemeh Khosravi ◽  
Seeram Ramakrishna ◽  
Ehsan Abasi ◽  
...  

The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.


Materials ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1246 ◽  
Author(s):  
Samson M. Mohomane ◽  
Tshwafo E. Motaung ◽  
Neerish Revaprasadu

Sign in / Sign up

Export Citation Format

Share Document