Tinospora cordifolia:A novel bioactive ingredient for edible films for improved lipid oxidative and microbial stability of meat products

2018 ◽  
Vol 42 (11) ◽  
pp. e13774 ◽  
Author(s):  
Insha K. Kalem ◽  
Z. F. Bhat ◽  
Sunil Kumar ◽  
Liwen Wang ◽  
Reshan J. Mudiyanselage ◽  
...  
Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 769
Author(s):  
Vlad Mihalca ◽  
Andreea Diana Kerezsi ◽  
Achim Weber ◽  
Carmen Gruber-Traub ◽  
Jürgen Schmucker ◽  
...  

Food packaging is an area of interest not just for food producers or food marketing, but also for consumers who are more and more aware about the fact that food packaging has a great impact on food product quality and on the environment. The most used materials for the packaging of food are plastic, glass, metal, and paper. Still, over time edible films have become widely used for a variety of different products and different food categories such as meat products, vegetables, or dairy products. For example, proteins are excellent materials used for obtaining edible or non-edible coatings and films. The scope of this review is to overview the literature on protein utilization in food packages and edible packages, their functionalization, antioxidant, antimicrobial and antifungal activities, and economic perspectives. Different vegetable (corn, soy, mung bean, pea, grass pea, wild and Pasankalla quinoa, bitter vetch) and animal (whey, casein, keratin, collagen, gelatin, surimi, egg white) protein sources are discussed. Mechanical properties, thickness, moisture content, water vapor permeability, sensorial properties, and suitability for the environment also have a significant impact on protein-based packages utilization.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Irais Sánchez-Ortega ◽  
Blanca E. García-Almendárez ◽  
Eva María Santos-López ◽  
Aldo Amaro-Reyes ◽  
J. Eleazar Barboza-Corona ◽  
...  

Animal origin foods are widely distributed and consumed around the world due to their high nutrients availability but may also provide a suitable environment for growth of pathogenic and spoilage microorganisms. Nowadays consumers demand high quality food with an extended shelf life without chemical additives. Edible films and coatings (EFC) added with natural antimicrobials are a promising preservation technology for raw and processed meats because they provide good barrier against spoilage and pathogenic microorganisms. This review gathers updated research reported over the last ten years related to antimicrobial EFC applied to meat and meat products. In addition, the films gas barrier properties contribute to extended shelf life because physicochemical changes, such as color, texture, and moisture, may be significantly minimized. The effectiveness showed by different types of antimicrobial EFC depends on meat source, polymer used, film barrier properties, target microorganism, antimicrobial substance properties, and storage conditions. The perspective of this technology includes tailoring of coating procedures to meet industry requirements and shelf life increase of meat and meat products to ensure quality and safety without changes in sensory characteristics.


2009 ◽  
Vol 44 (2) ◽  
pp. 337-341 ◽  
Author(s):  
Frank Devlieghere ◽  
Lieve Vermeiren ◽  
Erwin Bontenbal ◽  
Pieter-Paul Lamers ◽  
Johan Debevere

2021 ◽  
Vol 10 (7) ◽  
pp. e13610716379
Author(s):  
Daniele Hamann ◽  
Bruna Maria Saorin Puton ◽  
Rosicler Colet ◽  
Juliana Steffens ◽  
Giovana Cristina Ceni ◽  
...  

The packaging protects food from actions of external agents, from alterations and contaminations, in addition to adulteration. Edible films are structures produced from biopolymers, which can replace non-biodegradable packaging. These films have been formulated with naturally polymers of polysaccharides, lipids and proteins, isolated or combined with each other. Edible films produced with polysaccharides and proteins are transparent and flexible, although proteins films are less resistant. They act as a barrier, protecting food and increasing shelf life. Additionally, they can carry antimicrobial and antioxidant compounds, being called active films. The antioxidant power is proportional to the amount of the compound added. Natural extracts such as green tea, cloves, ginger and others can be incorporated into the films, wich could improving the mechanical properties of the films and the characteristics of the food. The use of active edible films has been evaluated in the meat industry as an alternative packaging. This review aims to address the use of edible films added with vegetable compounds, with antimicrobial and antioxidant activity, applied to meat products.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1344
Author(s):  
Dong-Heon Song ◽  
Van Ba Hoa ◽  
Hyoun Wook Kim ◽  
Sun Moon Khang ◽  
Soo-Hyun Cho ◽  
...  

In 2018, the worldwide consumption of meat was 346.14 million tonnes, and this is expected to increase in the future. As meat consumption increases, the use of packaging materials is expected to increase along with it. Petrochemical packaging materials which are widely used in the meat processing industry, take a long time to regenerate and biodegrade, thus they adversely affect the environment. Therefore, the necessity for the development of eco-friendly packaging materials for meat processing, which are easily degradable and recyclable, came to the fore. The objective of this review is to describe the application of natural compound-derived edible films with their antioxidant and antibacterial activities in meat and meat products. For several decades, polysaccharides (cellulose, starch, pectin, gum, alginate, carrageenan and chitosan), proteins (milk, collagen and isolated soy protein) and lipids (essential oil, waxes, emulsifiers, plasticizers and resins) were studied as basic materials for edible films to reduce plastic packaging. There are still high consumer demands for eco-friendly alternatives to petrochemical-based plastic packaging, and edible films can be used in a variety of ways in meat processing. More efforts to enhance the physiological and functional properties of edible films are needed for commercial application to meat and meat products.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 166 ◽  
Author(s):  
Roxana Gheorghita (Puscaselu) ◽  
Gheorghe Gutt ◽  
Sonia Amariei

The amount of plastics used globally today exceeds a million tonnes annually, with an alarming annual growth. The final result is that plastic packaging is thrown into the environment, and the problem of waste is increasing every year. A real alternative is the use bio-based polymer packaging materials. Research carried out in the laboratory context and products tested at the industrial level have confirmed the success of replacing plastic-based packaging with new, edible or completely biodegradable foils. Of the polysaccharides used to obtain edible materials, sodium alginate has the ability to form films with certain specific properties: resistance, gloss, flexibility, water solubility, low permeability to O2 and vapors, and tasteless or odorless. Initially used as coatings for perishable or cut fresh fruits and vegetables, these sodium alginate materials can be applied to a wide range of foods, especially in the meat industry. Used to cover meat products, sodium alginate films prevent mass loss and degradation of color and texture. The addition of essential oils prevents microbial contamination with Escherichia coli, Salmonella enterica, Listeria monocytogenes, or Botrytis cinerea. The obtained results promote the substitution of plastic packaging with natural materials based on biopolymers and, implicitly, of sodium alginate, with or without other natural additions. These natural materials have become the packaging of the future.


2015 ◽  
Vol 43 (2) ◽  
pp. 302-312 ◽  
Author(s):  
Dan Cristian VODNAR ◽  
Oana Lelia POP ◽  
Francisc Vasile DULF ◽  
Carmen SOCACIU

In this article, several applications of materials in food packaging and food safety are reviewed, including: polymers as high barrier packaging materials, natural substances as potent antimicrobial agents, and the efficiency of antimicrobial films in food industry. Active antimicrobial food packaging systems are supposed not only to passively protect food products against environmental factors, but also to inhibit or retard microbial growth on the food surface, extending the shelf life of products. Edible films can be incorporated into conventional food packaging systems with a dual purpose as an edible and antimicrobial component. Applications of antimicrobial films to fruits, vegetables and meat products have received increasing interest because films can serve as carriers for various natural antimicrobials that can maintain fresh quality, extend product shelf life and reduce the risk of pathogen growth. In the future, eco-friendly antimicrobial packaging films are promising food packaging materials because its biodegradability provides sustainable development for a modern community.In this article, several applications of materials in food packaging and food safety are reviewed, including: polymers as high barrier packaging materials, natural substances as potent antimicrobial agents, and the efficiency of antimicrobial films in food industry. Active antimicrobial food packaging systems are supposed not only to passively protect food products against environmental factors, but also to inhibit or retard microbial growth on the food surface, extending the shelf life of products. Edible films can be incorporated into conventional food packaging systems with a dual purpose as an edible and antimicrobial component. Applications of antimicrobial films to fruits, vegetables and meat products have received increasing interest because films can serve as carriers for various natural antimicrobials that can maintain fresh quality, extend product shelf life and reduce the risk of pathogen growth. In the future, eco-friendly antimicrobial packaging films are promising food packaging materials because its biodegradability provides sustainable development for modern community.


Author(s):  
Radhika Sharma ◽  
Zuhaib F. Bhat ◽  
Arvind Kumar ◽  
Sunil Kumar ◽  
Muhammad A. Bhatti ◽  
...  

2020 ◽  
Vol 16 (2) ◽  
pp. 120-133 ◽  
Author(s):  
Zahra Pilevar ◽  
Hedayat Hosseini ◽  
Samira Beikzadeh ◽  
Elham Khanniri ◽  
Adel Mirza Alizadeh

: Being an important source of human enteric diseases, microbiological safety is one of the major risk concerns in the meat industry. In order to inhibit and inactivate microbial contamination and extend the shelf life of meat products, different procedures have been practiced, including the addition of bacteriocins as proteinaceous antagonistic preservatives. This article discusses the application of bacteriocins which are capable of controlling the growth of pathogenic and spoilage microorganisms in meat and meat products. We identify possible ways to improve the performance of bacteriocins ensuring food safety and toxicity. We first provide a brief introduction to the classification of bacteriocins and then discuss their antimicrobial properties and mechanism of action alone and in combination with other hurdles in meat and meat products. Moreover, application methods of bacteriocins in meat products are described and cross-compared, introducing emerging meat products containing bacteriocins. : Despite the existence of many reports related to the application of bacteriocin-producing strains of lactic acid bacteria in meat products, very few review articles have attempted at evaluating the application of bacteriocins in the red meat while observing their antimicrobial mechanism of action as well as evaluating their applications in meat products. The application of these proteins in meat products has received considerable attention; however, there are still some drawbacks and limitations for their application. Characterization, identification, toxicity evaluation and investigating application level of bacteriocins produced by meat borne/non-meat borne bacteria appears to be necessary in order to increase the efficiency of extending shelf life and improving the microbial stability of meat products.


Sign in / Sign up

Export Citation Format

Share Document