Salvianolic acid B regulates collagen synthesis: Indirect influence on human dermal fibroblasts through the microvascular endothelial cell pathway

Author(s):  
Hong Meng ◽  
Meng‐Meng Zhao ◽  
Ru‐Ya Yang ◽  
Xiao‐Feng Deng ◽  
Hong‐Yan Zhang ◽  
...  
1992 ◽  
Vol 1 (4) ◽  
pp. 293-298 ◽  
Author(s):  
Carlton Young ◽  
Bruce E. Jarrell ◽  
James B. Hoying ◽  
Stuart K. Williams

The transplantation of endothelial cells represents a technology which has been suggested for applications ranging from improvement in function of implanted vascular devices to genetic therapy. The use of microvascular endothelial cell transplantation has seen increased use both in animal studies as well as clinical use. This report describes our techniques for the isolation and establishment of initial cultures of microvascular endothelial cells derived from porcine fat. A variety of anatomic sites within the pig were evaluated to determine the appropriateness of different sources of fat for endothelial cell isolation. The properitoneal fat was determined to be optimal due to the predominance of endothelium in this tissue and the ease of isolation of microvascular endothelium following collagenase digestion. The study of endothelial cell transplantation in the porcine model is now possible using the methods described for adipose tissue-derived micro vessel endothelial cell isolation.


2004 ◽  
Vol 67 (2) ◽  
pp. 139-151 ◽  
Author(s):  
Judy King ◽  
Tray Hamil ◽  
Judy Creighton ◽  
Songwei Wu ◽  
Priya Bhat ◽  
...  

2002 ◽  
Vol 103 (s2002) ◽  
pp. 464S-466S ◽  
Author(s):  
Nicoletta BASILICO ◽  
Livianna SPECIALE ◽  
Silvia PARAPINI ◽  
Pasquale FERRANTE ◽  
Donatella TARAMELLI

In this study, we investigated the production of endothelin 1 (ET-1) by a human microvascular endothelial cell line, HMEC-1, co-cultured with Plasmodium falciparum-parasitized red blood cells (pRBCs). The results indicate that hypoxia increased the basal level of ET-1 production by HMEC-1 cells after 24 or 48h of treatment. However, the co-incubation of HMEC-1 cells with pRBCs, but not with uninfected RBCs, induced a dose-dependent decrease of both constitutive and hypoxia-induced ET-1 production. The inhibition was not due to a decrease in cell viability, as lactate dehydrogenase release remained constant. These results indicate that pRBCs are able to interfere with both the constitutive and stimulated ET-1 release from the microvascular endothelium, thus inducing local modifications of the vascular tone and of the inflammatory response. This could be of relevance in the pathogenesis of the most severe forms of P. falciparum infections, such as cerebral malaria or malaria during pregnancy.


Sign in / Sign up

Export Citation Format

Share Document