Nematicidal screening of essential oils and potent toxicity of Dysphania ambrosioides essential oil against Meloidogyne incognita in vitro and in vivo

2019 ◽  
Vol 167 (7-8) ◽  
pp. 380-389 ◽  
Author(s):  
Aline F. Barros ◽  
Vicente P. Campos ◽  
Letícia L. de Paula ◽  
Denilson F. Oliveira ◽  
Fabíola J. de Silva ◽  
...  
Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
María Ibáñez ◽  
María Blázquez

The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients.


2021 ◽  
Vol 6 (2) ◽  
pp. 028-049
Author(s):  
Éva Szőke ◽  
Éva Lemberkovics

The importance of chamomile (Chamomilla recutita) inflorescence is widely known in classical and folk medicine, with the largest group of its effective constituents forming the essential oil (chamazulene, a-bisabolol, α-farnesene, trans-β-farnesene, spathulenol, cis/trans-en-in-dicycloethers). Among cultivated species, the Hungarian BK-2 contains more chamazulene in its essential oil than the German Degumil type, which is mainly cultivated for its a-bisabolol. Both components have important antiinflammatory activities. Wild populations can be easily distinguished from cultivated ones by their high amount of bisaboloides, particularly the flower of Hungarian Szabadkígyós wild type, which contained on average 48 % of the biologically active (-)-a-bisabolol. The population of Szabadkígyós has good salt tolerance which is important owing to global warming, because the proportion of saline areas is increasing worldwide. To keep the genome of Szabadkígyós having high (-)-a-bisabolol content, Szőke and research team used biotechnological methods. Sterile plantlets, were infected by Agrobacterium rhizogenes strains #A-4, #15834, #R-1601. The hairy root clones possessing the best growing and biosynthetical potential were multiplied for phytochemical investigations. Pharmacologically important compounds of their essential oils were followed in great detail. The amount of in vitro cultured terpenoids and polyin compounds was compared with that of in vivo plants. GC-MS studies showed that sterile chamomile cultures generated the most important terpenoid and polyin compounds characteristics of the mother plant. Berkheyaradulene, geranyl-isovalerat and cedrol as new components were identified in these sterile cultures. The main component of hairy root cultures (D/400, D/1, D/100 and Sz/400) was tr-b-farnesene and in addition one new compound: a-selinene was identified. Hairy root culture originated from chamomile collected in Szabadkígyós was intensive increased the essential oil content and pharmacological active compounds: (-) -α-bisabolol and β-eudesmol was also synthetized in large quantity. Furthermore, in vitro organized cultures were made from this population to obtain propagation material containing numerous active substances.


2020 ◽  
pp. 1379-1384
Author(s):  
Alex Rodrigues Silva Caetano ◽  
Sara Maria Chalfoun ◽  
Mario Lúcio Vilela Resende ◽  
Caroline Lima Angélico ◽  
Wilder Douglas Santiago ◽  
...  

Essential oils, also known as volatile oils, are substances produced through the secondary metabolism of plants. In this study, we determined the chemical composition and the in vitro and in vivo antifungal activity of the essential oils from four species of Eucalyptus, Eucalyptus citriodora, Eucalyptus camaldulensis, Eucalyptus grandis and Eucalyptus microcorys, against the Hemileia vastatrix fungus. The essential oils from these four species of Eucalyptus were extracted from their leaves by the hydrodistillation technique using a modified Clevenger apparatus. The chemical characterization was performed by gas chromatography coupled with a mass spectrometer detector and by gas chromatography using a flame ionization detector. The antifungal activities of the essential oils against H. vastatrix were studied by evaluating the percentage of spore germination using the microdilution test for in vitro assays. The curative and preventive effects were evaluated in in vivo tests. The principal constituents of the essential oil from E. citriodora were citronellal, citronellol and isopulegol, while E. camaldulensis produced 1,8-cineole, α-terpineol and α-pinene. 1,8-cineole, α-pinene and α-terpineol were obtained from E. grandis and 1,8-cineole, α-pinene and trans-pinocarveol were the principal components in the essential oil of E. microcorys. In vitro and in vivo antifungal activities against the fungus under study were observed for most of the essential oils, except the essential oil from E. microcorys, for which no preventive antifungal activity was observed. Only the curing of infection by the H. vastatrix fungus was observed with this oil.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 494 ◽  
Author(s):  
Reginaldo dos Santos Pedroso ◽  
Brenda Lorena Balbino ◽  
Géssica Andrade ◽  
Maria Cecilia Pereira Sacardo Dias ◽  
Tavane Aparecida Alvarenga ◽  
...  

Candidiasis therapy, especially for candidiasis caused by Candida non-albicans species, is limited by the relatively reduced number of antifungal drugs and the emergence of antifungal tolerance. This study evaluates the anticandidal activity of 41 plant-derived products against Candida species, in both planktonic and biofilm cells. This study also evaluates the toxicity and the therapeutic action of the most active compounds by using the Caenorhabditis elegans–Candida model. The planktonic cells were cultured with various concentrations of the tested agents. The Cupressus sempervirens, Citrus limon, and Litsea cubeba essential oils as well as gallic acid were the most active anticandidal compounds. Candida cell re-growth after treatment with these agents for 48 h demonstrated that the L. cubeba essential oil and gallic acid displayed fungistatic activity, whereas the C. limon and C. sempervirens essential oils exhibited fungicidal activity. The C. sempervirens essential oil was not toxic and increased the survival of C. elegans worms infected with C. glabrata or C. orthopsilosis. All the plant-derived products assayed at 250 µg/mL affected C. krusei biofilms. The tested plant-derived products proved to be potential therapeutic agents against Candida, especially Candida non-albicans species, and should be considered when developing new anticandidal agents.


2020 ◽  
Vol 23 (3) ◽  
pp. 196-204 ◽  
Author(s):  
Hanane Senouci ◽  
Nassira G. Benyelles ◽  
Mohammed E.A. Dib ◽  
Jean Costa ◽  
Alain Muselli

Background: Tomato is considered a model plant in genetics and is one of the most economically important crops of all those that exist in the world. Several species of fungi are reported on tomato fruit, causing damage both during cultivation and after harvest. Some of the appropriate actions that could be initiated to resolve the problem are to develop and search for new antimicrobial substances isolated from the bioactive natural products, such as essential oils. Aim and Objective: The aim of this work was to determine the chemical composition of essential oils of Ammoides verticillata, Allium sativum and Curcuma longa, to evaluate their in-vitro antifungal activities and in-vivo antifungal effect of essential oils to prevent the diseases caused by tomato. Materials and Methods: The essential oils obtained from aerial parts of plants were analyzed by GC/MS and tested for their antifungal activities against Penicillium expansum, Fusarium solani, Rhizopus stolonifer and Alternaria alternata using the radial growth technique method. The effectiveness in-vivo of the association between Allium sativum and Curcuma longa essential oils was also investigated on tomatoes inoculated by fungi. Results: The essential oil from A. verticilata was mainly composed of phenolic compounds (54.4%), the A. sativum oil was mainly composed of sulfur compounds (91.5%) and C. longa oil was dominated by oxygenated monoterpenes (82.0%). The obtained results in-vitro antifungal revealed that individual essential oils of A. verticillata and A. sativum were more active than the essential oil of C. longa against all screened microorganisms. An important antifungal effect of A. sativum and C. longa essential oils blend was obtained against P. expansum (100%), F. solani (95.2%), R. stolonifer (95.1%) and A. alternata (48.5%). Furthermore, A. sativum and C. longa essential oils blends have demonstrated promising in-vivo antifungal activity to control infection of tomato against P. expansum and R. stolonifer. Conclusion: A. sativum and C. longa essential oil blends can be used as a natural food preservative and alternative to chemical fungicides to protect stored tomato against many phytopathogens.


Author(s):  
Azime Küçükgül

The presence of different phytochemical components of essential oil such as tannins, alkaloids, terpenoids and phenolic compounds has antibacterial, antifungal, and anti-inflammatory effects. The aim of this study is to investigate importance of the major components of three herb essential oils (Thymus vulgaris L., Centauriumerythraea Rafn. And Foeniculumvulgare Mill) on challenging with fish diseases. The components of essential oils provided from a commercial firm were made GC/MS analyzes. The major component of T. vulgarewas carvacrol called as phenol, 2-methyl-5-(1-methylethyl) with 40%.The others were Linalool L (15.11%) and benzene, methyl(1-methylethyl)- (12.12%).The richest oil in C. erythraea was bicyclo[3.1.1]hept-2-ene, 2,6,6-trimethyl- (34.90%) called as alpha-pinene, followed by heptacosane (19.15%) and dotriacontane (17.72%), respectively.The evaluation of the essential oil of F. vulgarispresented benzene, 1-methoxy-4-(1-propenyl)- with 67.99%, followed by dl-Limonene (16.03%) and benzene, 1-methoxy-4-(2-propenyl)- (6.97%). The therapeutic effects of thyme are due to its high content of phenolic compounds, particularly carvacrol. The most important compounds of F. vulgare essential oil is anethole, fenchone, limonene that has antibacterial, antioxidant, antifungal and anticancer effects. The previous studies show that alpha pinene significantly inhibits many pathogenic Gram-negative bacteria. In aquaculture studies, in vitro and in vivo effects of the dominant compounds of essential oils in our study are consistent with the previous findings.


2019 ◽  
Vol 15 (7) ◽  
pp. 662-671 ◽  
Author(s):  
Nabila A. Sebaa ◽  
Amina T. Zatla ◽  
Mohammed E.A. Dib ◽  
Boufeldja Tabti ◽  
Jean Costa ◽  
...  

Background: Bellota species are used to treat various diseases in traditional folk medicine. Objectives: This study aimed to chemically characterize the essential oils and the hydrosol extract and regional specificity of the major components of Ballota nigra essential oil and to evaluate their in vitro and in vivo antifungal activities. Methods: Essential oils were obtained by a Clevenger-type apparatus and analyzed by using Gas Chromatography (GC) and Gas Chromatography Mass Spectroscopy (GC/MS). The antifungal activities were tested to three phytopathogenic stains (Penicillium expansum, Aspergillus niger and Alternaria alternata). Results: Altogether, 38 compounds were identified in the essential oils, representing 92.1-96.8% of the total oil composition. Their main constituents were E-β-caryophyllene (4.8-24.6%), E-β-farnesene (3.3-22.9%), β-bisabolene (7.6-30.2%), α-humulene (2.1-13.3%) and geranyl linalool (1.1-8.2%). The statistical methods deployed confirmed that there is a relation between the essential oil compositions and the harvest locations. Hydrosol extract was constituted by seven components, represented principally by methyl eugenol (75.2%) and caryophyllene oxide (12.5%). The results of in vitro antifungal activity with essential oil and hydrosol extract have shown very interesting antifungal activities on Penicillium expansum and Alternaria alternata strains with percentage reductions up to 80%. Additionally, in in vivo assays, Ballota nigra essential oil and hydrosol extract significantly reduce decay in artificially inoculated tomato by Alternaria alternata. Conclusion: The essential oil and hydrosol extract can be used as a potential source of sustainable eco-friendly botanical fungicides to protect stored tomatoes from pathogens, saprophytic fungi causing bio-deterioration to a variety of food commodities.


2001 ◽  
Vol 56 (9-10) ◽  
pp. 726-730 ◽  
Author(s):  
Marta Neves ◽  
Manuel Ferreira ◽  
Christian Terreaux ◽  
Kurt Hostettmann ◽  
Rui Morais

AbstractThe terpenoid constituents of Targionia lorbeeriana grown in vivo and in vitro were com pared. The analysis of the dichloromethane extract was performed by HPLC-UV and by HPLC-M S. The obtained results revealed that the sesquiterpene lactones isolated from the dichloromethane extract of the wild Targionia lorbeeriana were also produced by the liverwort in in vitro cultures, in the same relative amounts.The composition of essential oils was evaluated by GC and GC-MS. Both, the yield and diversity of the essential oil obtained from wild growing T. lorbeeriana gametophytes were higher than those growing in vitro. Although, a significant number of compounds produced in vivo were maintained in vitro, a considerable number of other ones were not detected. Instead, under in vitro conditions, some new compounds were found which do not accumulate under wild conditions.


2016 ◽  
Vol 11 (4) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Lauren AE Erland ◽  
Christopher R Bitcon ◽  
Ashley D Lemke ◽  
Soheil S Mahmoud

A growing body of literature indicates that many synthetic pesticides have adverse effects on human, animal, and environmental health. As a result, plant-derived natural products are quickly gaining momentum as safer and less ecologically damaging alternatives due to their low toxicity, high biodegradability, and good specificity. Essential oils of Lavandula angustifolia, Lavandula x intermedia cv Grosso, and Lavandula x intermedia cv Provence as well as various mono- and sesquiterpene essential oil constituents were tested in order to assess their antifungal potential on three important agricultural pathogens: Botrytis cinerea, Mucor piriformis, and Penicillium expansum. Fungal susceptibility testing was performed using disk diffusion assays. The majority of essential oil constituents tested did not have a significant effect; however, 3-carene, carvacrol, geraniol, nerol and perillyl alcohol demonstrated significant inhibition at concentrations as low as 1 μL/mL. In vivo testing using strawberry fruit as a model system supported in vitro results and revealed that perillyl alcohol, carvacrol and 3-carene were effective in limiting infection by postharvest pathogens.


Nematology ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1081-1089 ◽  
Author(s):  
Aline Ferreira Barros ◽  
Vicente Paulo Campos ◽  
Denilson Ferreira de Oliveira ◽  
Fabiola de Jesus Silva ◽  
Iselino Nogueira Jardim ◽  
...  

Summary There is a demand for novel products for the control of plant-parasitic nematodes, so we characterised the effectiveness of some plant essential oils against Meloidogyne incognita and verified the efficiency of the major component from the most toxic oils and their analogues using in vitro and in vivo assays. In this study, the essential oils from Piptadenia viridiflora, Hyptis suaveolens and Astronium graveolens against M. incognita were evaluated, but only P. viridiflora oil showed toxicity toward M. incognita. Benzaldehyde was its main component according to GC-MS analysis. In in vitro assays, benzaldehyde (100 and 200 μg ml−1) and its oxime (400 μg ml−1) caused a higher rate of M. incognita second-stage juvenile (J2) mortality than the nematicide carbofuran (170 μg ml−1). Reductions of more than 90% in the number of galls and eggs, even greater than that observed with carbofuran, were observed in the assay where the J2 were placed in solutions of benzaldehyde and its oxime 48 h prior to tomato plant inoculation. Application of benzaldehyde together with M. incognita J2 to the substrate resulted only in a reduction in the number of eggs (42-65%); however, its oxime reduced both the number of galls (43-84%) and eggs (23-89%). Therefore, the P. viridiflora oil, its major component benzaldehyde, and the analogue benzaldehyde oxime are toxic to M. incognita. In two different in vivo assays, benzaldehyde oxime was confirmed as toxic to M. incognita with a greater efficacy than benzaldehyde.


Sign in / Sign up

Export Citation Format

Share Document