Are habitat fragmentation, local adaptation and isolation-by-distance driving population divergence in wild riceOryza rufipogon?

2013 ◽  
Vol 22 (22) ◽  
pp. 5531-5547 ◽  
Author(s):  
Yao Zhao ◽  
Klaas Vrieling ◽  
Hui Liao ◽  
Manqiu Xiao ◽  
Yongqing Zhu ◽  
...  
2014 ◽  
Vol 369 (1648) ◽  
pp. 20130342 ◽  
Author(s):  
Alexander S. T. Papadopulos ◽  
Maria Kaye ◽  
Céline Devaux ◽  
Helen Hipperson ◽  
Jackie Lighten ◽  
...  

It is now recognized that speciation can proceed even when divergent natural selection is opposed by gene flow. Understanding the extent to which environmental gradients and geographical distance can limit gene flow within species can shed light on the relative roles of selection and dispersal limitation during the early stages of population divergence and speciation. On the remote Lord Howe Island (Australia), ecological speciation with gene flow is thought to have taken place in several plant genera. The aim of this study was to establish the contributions of isolation by environment (IBE) and isolation by community (IBC) to the genetic structure of 19 plant species, from a number of distantly related families, which have been subjected to similar environmental pressures over comparable time scales. We applied an individual-based, multivariate, model averaging approach to quantify IBE and IBC, while controlling for isolation by distance (IBD). Our analyses demonstrated that all species experienced some degree of ecologically driven isolation, whereas only 12 of 19 species were subjected to IBD. The prevalence of IBE within these plant species indicates that divergent selection in plants frequently produces local adaptation and supports hypotheses that ecological divergence can drive speciation in sympatry.


2020 ◽  
Author(s):  
Xu Zhang ◽  
Yanxia Sun ◽  
Jacob B. Landis ◽  
Jianwen Zhang ◽  
Linsen Yang ◽  
...  

SummaryInvestigating the interaction between environmental heterogeneity and local adaptation is critical to understand the evolutionary history of a species, providing the premise for studying the response of organisms to rapid climate change. However, for most species how exactly the spatial heterogeneity promotes population divergence and how genomic variations contribute to adaptive evolution remain poorly understood.We examine the contributions of geographical and environmental variables to population divergence of the relictual, alpine herb Circaeaster agrestis, as well as genetic basis of local adaptation using RAD-seq and plastome data.We detected significant genetic structure with an extraordinary disequilibrium of genetic diversity among regions, and signals of isolation-by-distance along with isolation-by-resistance. The populations were estimated to begin diverging in the late Miocene, along with a possible ancestral distribution of the Hengduan Mountains and adjacent regions. Both environmental gradient and redundancy analyses revealed significant association between genetic variation and temperature variables. Genome-environment association analyses identified 16 putatively adaptive loci related to biotic and abiotic stress resistance.Our genome wide data provide new insights into the important role of environmental heterogeneity in shaping genetic structure, and access the footprints of local adaptation in an ancient relictual species, informing conservation efforts.


2019 ◽  
Author(s):  
Angélica Cuevas ◽  
Mark Ravinet ◽  
Glenn-Peter Sætre ◽  
Fabrice Eroukhmanoff

ABSTRACTHybridization increases genetic variation, hence hybrid species may have a strong evolutionary potential once their admixed genomes have stabilized and incompatibilities have been purged. Yet, little is known about how such hybrid lineages evolve at the genomic level following their formation, in particular the characteristics of their adaptive potential, i.e. constraints and facilitations of diversification. Here we investigate how the Italian sparrow (Passer italiae), a homoploid hybrid species, has evolved and locally adapted to its variable environment. Using restriction site-associated DNA sequencing (RAD-seq) on several populations across the Italian peninsula, we evaluate how genomic constraints and novel genetic variation have influenced population divergence and adaptation. We show that population divergence within this hybrid species has evolved in response to climatic variation. As in non-hybrid species, climatic differences may even reduce gene flow between populations, suggesting ongoing local adaptation. We report outlier genes associated with adaptation to climatic variation, known to be involved in beak morphology in other species. Most of the strongly divergent loci among Italian sparrow populations seem not to be differentiated between its parent species, the house and Spanish sparrow. Within the parental species, population divergence has occurred mostly in loci where different alleles segregate in the parent species, unlike in the hybrid, suggesting that novel combinations of parental alleles in the hybrid have not necessarily enhanced its evolutionary potential. Rather, our study suggests that constraints linked to incompatibilities may have restricted the evolution of this admixed genome, both during and after hybrid species formation.


2008 ◽  
Vol 98 (4) ◽  
pp. 493-500 ◽  
Author(s):  
Daniela de M. e Silva ◽  
Aparecido D. da Cruz ◽  
Rogério P. Bastos ◽  
Mariana P. de C. Telles ◽  
José Alexandre F. Diniz-Filho

To assess genetic structure and phenotypic diversity of Eupemphix nattereri Steindachner, 1863, morphometric and molecular analyses were carried out for nine populations from the State of Goiás. A total of 11 morphometric traits were evaluated and genetic information was estimated using RAPD markers. Genetic and phenotypic distances were determined as a function of geographical origin. Correlation among genetic, morphometric, micro, and macroenviromental were analyzed by the Mantel test. Genetic data indicated high levels of genetic diversity (Φst= 0.3) among the nine populations. Mantel tests did not reveal a significant positive correlation between genetic and geographical distances, indicating that locally geographical populations were not genetically similar, even in distances smaller than 50 km. Discriminant analysis on 11 morphometric measurements showed a high divergence among the nine populations. However, a marginally significant correlation (P=0.08) between genetic and morphometric distances was found. The observed correlation was not causal in terms of the relationship between phenotype and genotype, but indicated common spatial structures. Thus, our results suggest that isolation-by-distance processes may explain population divergence in Eupemphix nattereri.


2019 ◽  
Vol 11 (20) ◽  
pp. 5863 ◽  
Author(s):  
Qingqing Yu ◽  
Qian Liu ◽  
Yi Xiong ◽  
Yanli Xiong ◽  
Zhixiao Dong ◽  
...  

Elymus breviaristatus is a grass species only distributed in the southeast of Qinghai-Tibetan Plateau (QTP), which has suffered from serious habitat fragmentation. Therefore, understanding patterns of genetic diversity within and among natural E. breviaristatus populations could provide insight for future conservation strategies. In this study, sequence-related amplified polymorphism markers were employed to investigate the genetic diversity and hierarchical structure of seven E. breviaristatus populations from QTP, China. Multiple measures of genetic diversity indicated that there is low to moderate genetic variation within E. breviaristatus populations, consistent with its presumed mating system. In spite of its rarity, E. breviaristatus presented high genetic diversity that was equivalent to or even higher than that of widespread species. Bayesian clustering approaches, along with clustering analysis and principal coordinate analysis partitioned the studied populations of E. breviaristatus into five genetic clusters. Differentiation coefficients (Fst, GST, etc.) and AMOVA analysis revealed considerable genetic divergence among different populations. BARRIER analyses indicated that there were two potential barriers to gene flow among the E. breviaristatus populations. Despite these patterns of differentiation, genetic distances between populations were independent of geographic distances (r = 0.2197, p = 0.2534), indicating little isolation by distance. Moreover, despite detecting a common outlier by two methods, bioclimatic factors (altitude, annual mean temperature, and annual mean precipitation) were not related to diversity parameters, indicating little evidence for isolation caused by the environment. These patterns of diversity within and between populations are used to propose a conservation strategy for E. breviaristatus.


Author(s):  
Hillary Cooper ◽  
Gerard Allan ◽  
Lela Andrews ◽  
Rebecca Best ◽  
Kevin Grady ◽  
...  

Widespread tree species span large climatic gradients that often lead to high levels of local adaptation and phenotypic divergence across their range. To evaluate the relative roles of selection and drift in driving divergence in phenotypic traits, we compared molecular and quantitative genetic variation in Populus fremontii (Fremont cottonwood), using data from > 9000 SNPs and genotypes from 16 populations reciprocally planted in three common gardens that span the species’ climatic range. We present three major findings: 1) There is significant within- and among-population variation in functional traits expressed in each of the common gardens. 2) There is evidence from all three gardens that population divergence in leaf phenology and specific leaf area has been driven by divergent selection (QST > FST). In contrast, QST-FST comparisons for performance traits like height and basal diameter were highly dependent on growing environment, indicating divergent, stabilizing, or no selection across the three gardens. We show this is likely due to local adaptation of source populations to contrasting growing environments. 3) Climate is a primary selective force driving trait divergence, where the traits showing the strongest correlations with a genotype’s provenance climate also had the highest QST values. We conclude that climatic gradients have contributed to significant phenotypic differences and local adaptation in Fremont cottonwood. These results are important because as climate is changing much more rapidly, traits such as phenology that are finely tuned to local conditions may now be subject to intense selection or quickly become maladaptive.


2020 ◽  
Author(s):  
Kun Guo ◽  
Chen Chen ◽  
Xiao-Fang Liang ◽  
Yan-Fu Qu ◽  
Xiang Ji

Abstract Background: Identifying the factors that contribute to divergence among populations in mate preferences is important for understanding of the manner in which premating reproductive isolation might arise and how this isolation may in turn contribute to the evolutionary process of population divergence. Here, we offered female northern grass lizards (Takydromus septentrionalis) a choice of males between their own population and another four populations to test whether the preferences that females display in the mating trials correlate with phenotypic adaptation to local environments, or to the neutral genetic distance measured by divergence of mitochondrial DNA sequence loci. Results: Females showed a strong preference for native over foreign males. Females that mated with native versus foreign males did not differ from each other in mating latency, or copulation duration. From results of the structural equation modelling we knew that: 1) geographical distance directly contributed to genetic differentiation and environmental dissimilarity; 2) genetic differentiation and environmental dissimilarity indirectly contributed to female mate preference, largely through their effects on morphological divergence; and 3) females judged mates by body shape (appearance) and discriminated more strongly against morphologically less familiar allopatric males.Conclusions: Local adaptation rather than neutral genetic distance influences female mate preference in T. septentrionalis. The tendency to avoid mating with foreign males may indicate that, in T. septentrionalis, local adaptations are more valuable than genetic novelties. Our results highlight the importance of comprehensive studies integrating ecological, molecular and behavioral approaches to understand population divergence in female mate preferences as the consequence of local adaptations.


2013 ◽  
Vol 34 (1) ◽  
pp. 95-107 ◽  
Author(s):  
Astrid Krug ◽  
Heike Pröhl

Habitat degradation and fragmentation are known to be major threats for population persistence in European amphibians. The European tree frog Hyla arborea has suffered from dramatic population declines in the last decades and has therefore been categorised as threatened in many Red Data lists. In the region of Hannover (Germany), the European tree frog has a fragmented distribution. The aim of our study was to infer the genetic consequences of habitat fragmentation in this area by examining genetic variation and population structure. DNA samples from 193 individuals from 11 sampling sites (10 sampling sites located 2 to 32 km apart from each other near Hannover and for comparison one sampling site 140 km northeast) were analysed with eight highly polymorphic microsatellite loci. Bayesian analyses indicated that the tree frog occurrences near Hannover were fragmented into four genetically distinct clusters according to their geographical distribution. Pairwise genetic distances between sampling sites varied between 0 and 0.23 (FST) and 0 and 0.48 (Dest) and indicated high to moderate gene flow within genetic clusters and nearly absent gene flow among genetic clusters. Moreover, we identified a potential source population within the region for an introduced population in the southwest of Hannover. Our data suggest that the genetic structure is influenced in part by isolation by distance and in part by lack of habitat or migration barriers. Habitat fragmentation should by counteracted by targeted conservation measures in areas where gaps in distribution and genetic fragmentation have been revealed.


2020 ◽  
Vol 141 ◽  
pp. 103398 ◽  
Author(s):  
Danilo Pereira ◽  
Daniel Croll ◽  
Patrick C. Brunner ◽  
Bruce A. McDonald

2019 ◽  
Vol 125 (1) ◽  
pp. 105-117 ◽  
Author(s):  
Yixuan Kou ◽  
Li Zhang ◽  
Dengmei Fan ◽  
Shanmei Cheng ◽  
Dezhu Li ◽  
...  

Abstract Background and Aims Many monotypic gymnosperm lineages in south-east China paradoxically remain in relict status despite long evolutionary histories and ample opportunities for allopatric speciation, but this paradox has received little attention and has yet to be resolved. Here, we address this issue by investigating the evolutionary history of a relict conifer, Pseudotaxus chienii (Taxaceae). Methods DNA sequences from two chloroplast regions and 14 nuclear loci were obtained for 134 samples. The demographic history was inferred and the contribution of isolation by environment (IBE) in patterning genetic divergence was compared with that of isolation by distance (IBD). Key Results Three genetic clusters were identified. Approximate Bayesian computation analyses showed that the three clusters diverged in the late Pliocene (~3.68 Ma) and two admixture events were detected. Asymmetric gene flow and similar population divergence times (~ 3.74 Ma) were characterized using the isolation with migration model. Neither IBD nor IBE contributed significantly to genetic divergence, and the contribution of IBE was much smaller than that of IBD. Conclusions These results suggest that several monotypic relict gymnosperm lineages like P. chienii in south-east China did not remain in situ and undiversified for millions of years. On the contrary, they have been evolving and the extant populations have become established more recently, having insufficient time to speciate. Our findings provide a new perspective for understanding the formation and evolution of the relict gymnosperm flora of China as well as of the Sino-Japanese Flora.


Sign in / Sign up

Export Citation Format

Share Document