scholarly journals An actin-depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2 ), is superior to its rice homolog (OsADF2 ) in conferring drought and salt tolerance when constitutively overexpressed in rice

2018 ◽  
Vol 17 (1) ◽  
pp. 188-205 ◽  
Author(s):  
Sonali Sengupta ◽  
Venkata Mangu ◽  
Luis Sanchez ◽  
Renesh Bedre ◽  
Rohit Joshi ◽  
...  
IERI Procedia ◽  
2013 ◽  
Vol 5 ◽  
pp. 102-106
Author(s):  
Hongli Li ◽  
Diqiu Liu ◽  
Hua He ◽  
Nannan Zhang ◽  
Feng Ge ◽  
...  

2014 ◽  
Vol 33 (2) ◽  
pp. 167-177 ◽  
Author(s):  
Guoxin Shen ◽  
Jia Wei ◽  
Xiaoyun Qiu ◽  
Rongbin Hu ◽  
Sundaram Kuppu ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0142446 ◽  
Author(s):  
Lin Wang ◽  
Qingtian Li ◽  
Qiong Lei ◽  
Chao Feng ◽  
Yinan Gao ◽  
...  

2021 ◽  
Author(s):  
Fang Wang ◽  
Peng Fang ◽  
Huiping Yan ◽  
Xiangzhuo Ji ◽  
Yunling Peng

Abstract The homeodomain leucine zipper (HD-Zip) IV transcription factor is indispensable in the response of plants to abiotic stress. Systematic studies have been carried out in Arabidopsis, rice and other species from which a series of stress resistance-related genes have been isolated. However, the function of the HD-Zip-IV protein in maize is not clear. In this study, we cloned the HD-Zip-IV gene ZmHDZIV13 and identified its function in the stress response. Our phylogenetic analysis showed that ZmHDZIV13 and AtHDG11 had high homology and might have similar functions. The heterologous overexpression of ZmHDZIV13 in Arabidopsis resulted in sensitivity to abscisic acid (ABA), salt tolerance during germination and drought tolerance in seedlings. Under drought stress, the transgenic Arabidopsis showed stronger drought resistance than the wild-type showed (control). The malondialdehyde content of ZmHDZIV13 transgenic plants was lower than that of the control, and the relative water content and proline content were significantly higher than those of the control. After the drought was relieved, the expression of P5CS1, RD22, RD29B, RD29A, NCED3 and ERD1 were upregulated in transgenic Arabidopsis. Also, modified tobacco plants (35S::ZmHDZIV13) exhibited proper stomatal changes in response to drought conditions. These results show that ZmHDZIV13, as a stress-responsive transcription factor, plays a role in the positive regulation of abiotic stress tolerance and can regulate an ABA-dependent signaling pathway to regulate drought response in plants.


2019 ◽  
Author(s):  
Wenbin Ye ◽  
Taotao Wang ◽  
Wei Wei ◽  
Shuaitong Lou ◽  
Faxiu Lan ◽  
...  

ABSTRACTSpartina alterniflora (Spartina) is the only halophyte in the salt marsh. However, the molecular basis of its high salt tolerance remains elusive. In this study, we used PacBio full-length single molecule long-read sequencing and RNA-seq to elucidate the transcriptome dynamics of high salt tolerance in Spartina by salt-gradient experiments (0, 350, 500 and 800 mM NaCl). We systematically analyzed the gene expression diversity and deciphered possible roles of ion transporters, protein kinases and photosynthesis in salt tolerance. Moreover, the co-expression network analysis revealed several hub genes in salt stress regulatory networks, including protein kinases such as SaOST1, SaCIPK10 and three SaLRRs. Furthermore, high salt stress affected the gene expression of photosynthesis through down-regulation at the transcription level and alternative splicing at the post-transcriptional level. In addition, overexpression of two Spartina salt-tolerant genes SaHSP70-I and SaAF2 in Arabidopsis significantly promoted the salt tolerance of transgenic lines. Finally, we built the SAPacBio website for visualizing the full-length transcriptome sequences, transcription factors, ncRNAs, salt-tolerant genes, and alternative splicing events in Spartina. Overall, this study sheds light on the high salt tolerance mechanisms of monocotyledonous-halophyte and demonstrates the potential of Spartina genes for engineering salt-tolerant plants.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Catherine M. Van Dongen ◽  
Logan M. Rakes ◽  
Joseph W. Moriarty ◽  
Sam Mason ◽  
Matthias Leu

2019 ◽  
Vol 20 (1) ◽  
pp. 153 ◽  
Author(s):  
Xing Wang ◽  
Fei Gao ◽  
Jie Bing ◽  
Weimin Sun ◽  
Xiuxiu Feng ◽  
...  

Plasma membrane intrinsic proteins (PIPs) are a subfamily of aquaporin proteins located on plasma membranes where they facilitate the transport of water and small uncharged solutes. PIPs play an important role throughout plant development, and in response to abiotic stresses. Jojoba (Simmondsia chinensis (Link) Schneider), as a typical desert plant, tolerates drought, salinity and nutrient-poor soils. In this study, a PIP1 gene (ScPIP1) was cloned from jojoba and overexpressed in Arabidopsis thaliana. The expression of ScPIP1 at the transcriptional level was induced by polyethylene glycol (PEG) treatment. ScPIP1 overexpressed Arabidopsis plants exhibited higher germination rates, longer roots and higher survival rates compared to the wild-type plants under drought and salt stresses. The results of malonaldehyde (MDA), ion leakage (IL) and proline content measurements indicated that the improved drought and salt tolerance conferred by ScPIP1 was correlated with decreased membrane damage and improved osmotic adjustment. We assume that ScPIP1 may be applied to genetic engineering to improve plant tolerance based on the resistance effect in transgenic Arabidopsis overexpressing ScPIP1.


Sign in / Sign up

Export Citation Format

Share Document